Point Group C11

C11 E C11 (C11)2 (C11)3 (C11)4 (C11)5 (C11)6 (C11)7 (C11)8 (C11)9 (C11)10
A 1 1 1 1 1 1 1 1 1 1 1
E1* 2 2cos(2π/11) 2cos(4π/11) 2cos(6π/11) 2cos(8π/11) 2cos(10π/11) 2cos(10π/11) 2cos(8π/11) 2cos(6π/11) 2cos(4π/11) 2cos(2π/11)
E2* 2 2cos(4π/11) 2cos(8π/11) 2cos(10π/11) 2cos(6π/11) 2cos(2π/11) 2cos(2π/11) 2cos(6π/11) 2cos(10π/11) 2cos(8π/11) 2cos(4π/11)
E3* 2 2cos(6π/11) 2cos(10π/11) 2cos(4π/11) 2cos(2π/11) 2cos(8π/11) 2cos(8π/11) 2cos(2π/11) 2cos(4π/11) 2cos(10π/11) 2cos(6π/11)
E4* 2 2cos(8π/11) 2cos(6π/11) 2cos(2π/11) 2cos(10π/11) 2cos(4π/11) 2cos(4π/11) 2cos(10π/11) 2cos(2π/11) 2cos(6π/11) 2cos(8π/11)
E5* 2 2cos(10π/11) 2cos(2π/11) 2cos(8π/11) 2cos(4π/11) 2cos(6π/11) 2cos(6π/11) 2cos(4π/11) 2cos(8π/11) 2cos(2π/11) 2cos(10π/11)

Additional information

Number of symmetry elements h = 11
Number of classes, irreps n = 11
Number of real-valued irreducible representations n = 6
Abelian group yes
Optical Isomerism (Chirality) yes
Polar yes
Parity no

Reduce representation to irreducible representations

E C11 (C11)2 (C11)3 (C11)4 (C11)5 (C11)6 (C11)7 (C11)8 (C11)9 (C11)10

Genrate representation from irreducible representations

A E1* E2* E3* E4* E5*

Direct products of irreducible representations

Binary products
A E1* E2* E3* E4* E5*
E1* E12A⊕E2
E2* E2E1⊕E32A⊕E4
E3* E3E2⊕E4E1⊕E52A⊕E5
E4* E4E3⊕E5E2⊕E5E1⊕E42A⊕E3
E5* E5E4⊕E5E3⊕E4E2⊕E3E1⊕E22A⊕E1

Ternary Products
Quaternary Products

Symmetric powers [Γn] of degenerate irreducible representations
Vibrational overtones

irrep 2] 3] 4] 5] 6]
E1* A⊕E2E1⊕E3A⊕E2⊕E4E1⊕E3⊕E5A⊕E2⊕E4⊕E5More
E2* A⊕E4E2⊕E5A⊕E3⊕E4E1⊕E2⊕E5A⊕E1⊕E3⊕E4More
E3* A⊕E5E2⊕E3A⊕E1⊕E5E2⊕E3⊕E4A⊕E1⊕E4⊕E5More
E4* A⊕E3E1⊕E4A⊕E3⊕E5E1⊕E2⊕E4A⊕E2⊕E3⊕E5More
E5* A⊕E1E4⊕E5A⊕E1⊕E2E3⊕E4⊕E5A⊕E1⊕E2⊕E3More

Spherical harmonics and Multipoles
Symmetric Powers of Γxyz

Spherical Harmonics Yl / Multipole Symmetric Power [Γl(xyz)]
l 2l+1 Multipole Symmetry Rank l(xyz)]
s (l=0) 1 Monopole A 1 A
p (l=1) 3 Dipole A⊕E1 3 A⊕E1
d (l=2) 5 Quadrupole A⊕E1⊕E2 6 2A⊕E1⊕E2
f (l=3) 7 Octupole A⊕E1⊕E2⊕E3 10 2A⊕2E1⊕E2⊕E3
g (l=4) 9 Hexadecapole A⊕E1⊕E2⊕E3⊕E4 15 3A⊕2E1⊕2E2⊕E3⊕E4
h (l=5) 11 Dotricontapole A⊕E1⊕E2⊕E3⊕E4⊕E5 21 3A⊕3E1⊕2E2⊕2E3⊕E4⊕E5
i (l=6) 13 Tetrahexacontapole A⊕E1⊕E2⊕E3⊕E4⊕2E5 28 4A⊕3E1⊕3E2⊕2E3⊕2E4⊕2E5
j (l=7) 15 Octacosahectapole A⊕E1⊕E2⊕E3⊕2E4⊕2E5 36 4A⊕4E1⊕3E2⊕3E3⊕3E4⊕3E5
k (l=8) 17 256-pole A⊕E1⊕E2⊕2E3⊕2E4⊕2E5 45 5A⊕4E1⊕4E2⊕4E3⊕4E4⊕4E5
l (l=9) 19 512-pole A⊕E1⊕2E2⊕2E3⊕2E4⊕2E5 55 5A⊕5E1⊕5E2⊕5E3⊕5E4⊕5E5
m (l=10) 21 1024-pole A⊕2E1⊕2E2⊕2E3⊕2E4⊕2E5 66 6A⊕6E1⊕6E2⊕6E3⊕6E4⊕6E5
n (l=11) 23 2048-pole 3A⊕2E1⊕2E2⊕2E3⊕2E4⊕2E5 78 8A⊕7E1⊕7E2⊕7E3⊕7E4⊕7E5
o (l=12) 25 4096-pole 3A⊕3E1⊕2E2⊕2E3⊕2E4⊕2E5 91 9A⊕9E1⊕8E2⊕8E3⊕8E4⊕8E5

First nonvanshing multipole: Dipole

Further Reading

  • A. Gelessus, W. Thiel, W. Weber. J. Chem. Educ. 72 505 (1995)
    Multipoles and symmetry

Ligand Field, dn term splitting

Term symbols for electronic configurations dn
dn Term Symbols
d1 = d9 2D
d2 = d8 1S, 1D, 1G, 3P, 3F
d3 = d7 2P, 2D (2), 2F, 2G, 2H, 4P, 4F
d4 = d6 1S (2), 1D (2), 1F, 1G (2), 1I, 3P (2), 3D, 3F (2), 3G, 3H, 5D
d5 2S, 2P, 2D (3), 2F (2), 2G (2), 2H, 2I, 4P, 4D, 4F, 4G, 6S

Term splitting in point group C11
L 2L+1 Term Splitting
S (L=0) 1 A
P (L=1) 3 A⊕E1
D (L=2) 5 A⊕E1⊕E2
F (L=3) 7 A⊕E1⊕E2⊕E3
G (L=4) 9 A⊕E1⊕E2⊕E3⊕E4
H (L=5) 11 A⊕E1⊕E2⊕E3⊕E4⊕E5
I (L=6) 13 A⊕E1⊕E2⊕E3⊕E4⊕2E5

Last update August, 12th 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement