Results for Point Group C11



Symmetric powers of degenerate representation E2
Vibrational overtones


Characters of symmetric powers
Power
To
E 2C11 2(C11)2 2(C11)3 2(C11)4 2(C11)5
1 2 0.831 -1.310 -1.919 -0.285 1.683
2 3 -0.310 0.715 2.683 -0.919 1.831
3 4 -1.088 0.373 -3.229 0.546 1.398
4 5 -0.594 -1.204 3.513 0.764 0.521
5 6 0.594 1.204 -3.513 -0.764 -0.521
6 7 1.088 -0.373 3.229 -0.546 -1.398
7 8 0.310 -0.715 -2.683 0.919 -1.831
8 9 -0.831 1.310 1.919 0.285 -1.683
9 10 -1.000 -1.000 -1.000 -1.000 -1.000
10 11 -0.000 -0.000 0.000 0.000 0.000
11 12 1.000 1.000 1.000 1.000 1.000
12 13 0.831 -1.310 -1.919 -0.285 1.683
13 14 -0.310 0.715 2.683 -0.919 1.831
14 15 -1.088 0.373 -3.229 0.546 1.398
15 16 -0.594 -1.204 3.513 0.764 0.521
16 17 0.594 1.204 -3.513 -0.764 -0.521
17 18 1.088 -0.373 3.229 -0.546 -1.398
18 19 0.310 -0.715 -2.683 0.919 -1.831
19 20 -0.831 1.310 1.919 0.285 -1.683
20 21 -1.000 -1.000 -1.000 -1.000 -1.000


Decomposition to irreducible representations
Power
To
A E1* E2* E3* E4* E5*
1 0 0 1 0 0 0 E2
2 1 0 0 0 1 0 A⊕E4
3 0 0 1 0 0 1 E2⊕E5
4 1 0 0 1 1 0 A⊕E3⊕E4
5 0 1 1 0 0 1 E1⊕E2⊕E5
6 1 1 0 1 1 0 A⊕E1⊕E3⊕E4
7 0 1 1 1 0 1 E1⊕E2⊕E3⊕E5
8 1 1 0 1 1 1 A⊕E1⊕E3⊕E4⊕E5
9 0 1 1 1 1 1 E1⊕E2⊕E3⊕E4⊕E5
10 1 1 1 1 1 1 A⊕E1⊕E2⊕E3⊕E4⊕E5
11 2 1 1 1 1 1 2A⊕E1⊕E2⊕E3⊕E4⊕E5
12 1 1 2 1 1 1 A⊕E1⊕2E2⊕E3⊕E4⊕E5
13 2 1 1 1 2 1 2A⊕E1⊕E2⊕E3⊕2E4⊕E5
14 1 1 2 1 1 2 A⊕E1⊕2E2⊕E3⊕E4⊕2E5
15 2 1 1 2 2 1 2A⊕E1⊕E2⊕2E3⊕2E4⊕E5
16 1 2 2 1 1 2 A⊕2E1⊕2E2⊕E3⊕E4⊕2E5
17 2 2 1 2 2 1 2A⊕2E1⊕E2⊕2E3⊕2E4⊕E5
18 1 2 2 2 1 2 A⊕2E1⊕2E2⊕2E3⊕E4⊕2E5
19 2 2 1 2 2 2 2A⊕2E1⊕E2⊕2E3⊕2E4⊕2E5
20 1 2 2 2 2 2 A⊕2E1⊕2E2⊕2E3⊕2E4⊕2E5



Last update January, 3rd 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement