## Character table for point group D∞h

 D∞h E 2C∞ ... ∞σv i 2S∞ ... ∞C'2 linear functions,rotations quadraticfunctions cubicfunctions A1g=Σ+g +1 +1 ... +1 +1 +1 ... +1 - x2+y2, z2 - A2g=Σ-g +1 +1 ... -1 +1 +1 ... -1 Rz - - E1g=Πg +2 +2cos(φ) ... 0 +2 -2cos(φ) ... 0 (Rx, Ry) (xz, yz) - E2g=Δg +2 +2cos(2φ) ... 0 +2 +2cos(2φ) ... 0 - (x2-y2, xy) - E3g=Φg +2 +2cos(3φ) ... 0 +2 -2cos(3φ) ... 0 - - - Eng +2 +2cos(nφ) ... 0 +2 (-1)n2cos(nφ) ... 0 - - - ... ... ... ... ... ... ... ... ... - - - A1u=Σ+u +1 +1 ... +1 -1 -1 ... -1 z - z3, z(x2+y2) A2u=Σ-u +1 +1 ... -1 -1 -1 ... +1 - - - E1u=Πu +2 +2cos(φ) ... 0 -2 +2cos(φ) ... 0 (x, y) - (xz2, yz2) [x(x2+y2), y(x2+y2)] E2u=Δu +2 +2cos(2φ) ... 0 -2 -2cos(2φ) ... 0 - - [xyz, z(x2-y2)] E3u=Φu +2 +2cos(3φ) ... 0 -2 2cos(3φ) ... 0 - - [y(3x2-y2), x(x2-3y2)] Enu +2 +2cos(nφ) ... 0 -2 (-1)n+12cos(nφ) ... 0 - - - ... ... ... ... ... ... ... ... ... - - -

## Additional information

 CsCiC2,C3,C4,C5,C6,…,C∞D2,D3,D4,D5,D6,…,D∞C2v,C3v,C4v,C5v,C6v,…,C∞v,C2h,C3h,C4h,C5h,C6h,…,C∞hD2h,D3h,D4h,D5h,D6h,…D2d,D3d,D4d,D5d,D6d,…,D∞dS4,S6,S8,S10,S12,…,S∞ Number of symmetry elements h = ∞ Number of irreducible representations n = ∞ Abelian group no Number of subgroups ∞ Number of distinct subgroups ∞ Subgroups Optical Isomerism (Chirality) no Polar no

## Force field analysis for point group D∞h

Force field analysis for linear molecules

Number of atoms:

## Multipoles

dipole (p) Σ+u+Πu Σ+g+Πg+Δg Σ+u+Πu+Δu+Φu Σ+g+Πg+Δg+Φg+Γg Σ+u+Πu+Δu+Φu+Γu+Hu Σ+g+Πg+Δg+Φg+Γg+Hg+Ig Σ+u+Πu+Δu+Φu+Γu+Hu+Iu+Ju Σ+g+Πg+Δg+Φg+Γg+Hg+Ig+Jg+Kg Σ+u+Πu+Δu+Φu+Γu+Hu+Iu+Ju+Ku+Lu

First nonvanishing multipole: quadrupole

### Literature

Last update Mai, 23rd 2018 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement