=exp(2
i/8)| S8 | E | S8 | C4 (z) | (S8)3 | C2 | (S8)5 | (C4)3 | (S8)7 | rotations |
functions |
functions |
|---|---|---|---|---|---|---|---|---|---|---|---|
| A | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | Rz | x2+y2, z2 | - |
| B | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | z | - | z3, z(x2+y2) |
| E1 | +1 +1 |
+![]() + * | +i -i | - *- ![]() | -1 -1 | -![]() - * | -i +i | + *+ ![]() | x+iy x-iy |
- | (xz2, yz2) [x(x2+y2), y(x2+y2)] |
| E2 | +1 +1 |
+i -i | -1 -1 | -i +i | +1 +1 | +i -i | -1 -1 | -i +i | - | (x2-y2, xy) | [xyz, z(x2-y2)] |
| E3 | +1 +1 |
-![]() - * | +i -i | + *+ ![]() | -1 -1 | +![]() + * | -i +i | - *- ![]() | Rx+iRy Rx-iRy |
(xz, yz) | [y(3x2-y2), x(x2-3y2)] |
| Number of symmetry elements | h = 8 |
| Number of irreducible representations | n = 8 |
| Number of real irreducible representations | n = 5 |
| Abelian group | yes |
| Number of subgroups | 2 |
| Subgroups | C2 , C4 |
|---|---|
| Optical Isomerism (Chirality) | no |
| Polar | no |
| dipole (p) | B+E1 |
|---|---|
| quadrupole (d) | A+E2+E3 |
| octopole (f) | B+E1+E2+E3 |
| hexadecapole (g) | A+2B+E1+E2+E3 |
| 32-pole (h) | 2A+B+E1+E2+2E3 |
| 64-pole (i) | A+2B+2E1+2E2+E3 |
| 128-pole (j) | 2A+B+2E1+2E2+2E3 |
| 256-pole(k) | 3A+2B+2E1+2E2+2E3 |
| 512-pole (l) | 2A+3B+3E1+2E2+2E3 |