## Character table for point group C∞v

 C∞v E 2C∞ ... ∞ σv linear functions,rotations quadraticfunctions cubicfunctions A1=Σ+ +1 +1 ... +1 z x2+y2, z2 z3, z(x2+y2) A2=Σ- +1 +1 ... -1 Rz - - E1=Π +2 +2cos(φ) ... 0 (x, y) (Rx, Ry) (xz, yz) (xz2, yz2) [x(x2+y2), y(x2+y2)] E2=Δ +2 +2cos(2φ) ... 0 - (x2-y2, xy) [xyz, z(x2-y2)] E3=Φ +2 +2cos(3φ) ... 0 - - [y(3x2-y2), x(x2-3y2)] ... ... ... ... ... - - - En +2 +2cos(nφ) ... 0 - - -

 CsC2,C3,C4,C5,C6,…,C∞C2v,C3v,C4v,C5v,C6v,… Number of symmetry elements h = ∞ Number of irreducible representations n = ∞ Abelian group no Number of subgroups ∞ Number of distinct subgroups ∞ Subgroups Optical Isomerism (Chirality) no Polar yes

## Force field analysis for point group C∞v

Force field analysis for linear molecules

Number of atoms:

## Multipoles

dipole (p) Σ++Π Σ++Π+Δ Σ++Π+Δ+Φ Σ++Π+Δ+Φ+Γ Σ++Π+Δ+Φ+Γ+H Σ++Π+Δ+Φ+Γ+H+I Σ++Π+Δ+Φ+Γ+H+I+J Σ++Π+Δ+Φ+Γ+H+I+J+K Σ++Π+Δ+Φ+Γ+H+I+J+K+L

First nonvanishing multipole: dipole

### Literature

Last update Mai, 23rd 2018 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement