Point Group C11v



C11v E 2C11 2(C11)2 2(C11)3 2(C11)4 2(C11)5 11σv
A1 1 1 1 1 1 1 1
A2 1 1 1 1 1 1 -1
E1 2 2cos(2π/11) 2cos(4π/11) 2cos(6π/11) 2cos(8π/11) 2cos(10π/11) 0
E2 2 2cos(4π/11) 2cos(8π/11) 2cos(10π/11) 2cos(6π/11) 2cos(2π/11) 0
E3 2 2cos(6π/11) 2cos(10π/11) 2cos(4π/11) 2cos(2π/11) 2cos(8π/11) 0
E4 2 2cos(8π/11) 2cos(6π/11) 2cos(2π/11) 2cos(10π/11) 2cos(4π/11) 0
E5 2 2cos(10π/11) 2cos(2π/11) 2cos(8π/11) 2cos(4π/11) 2cos(6π/11) 0


Additional information

Number of symmetry elements h = 22
Number of classes, irreps n = 7
Abelian group no
Optical Isomerism (Chirality) no
Polar yes
Parity no


Reduce representation to irreducible representations


E 2C11 2(C11)2 2(C11)3 2(C11)4 2(C11)5 11σv



Genrate representation from irreducible representations


A1 A2 E1 E2 E3 E4 E5




Direct products of irreducible representations


Binary products
A1 A2 E1 E2 E3 E4 E5
A1 A1
A2 A2A1
E1 E1E1A1⊕A2⊕E2
E2 E2E2E1⊕E3A1⊕A2⊕E4
E3 E3E3E2⊕E4E1⊕E5A1⊕A2⊕E5
E4 E4E4E3⊕E5E2⊕E5E1⊕E4A1⊕A2⊕E3
E5 E5E5E4⊕E5E3⊕E4E2⊕E3E1⊕E2A1⊕A2⊕E1

Ternary Products
Quaternary Products



Symmetric powers [Γn] of degenerate irreducible representations
Vibrational overtones


irrep 2] 3] 4] 5] 6]
E1 A1⊕E2E1⊕E3A1⊕E2⊕E4E1⊕E3⊕E5A1⊕E2⊕E4⊕E5More
E2 A1⊕E4E2⊕E5A1⊕E3⊕E4E1⊕E2⊕E5A1⊕E1⊕E3⊕E4More
E3 A1⊕E5E2⊕E3A1⊕E1⊕E5E2⊕E3⊕E4A1⊕E1⊕E4⊕E5More
E4 A1⊕E3E1⊕E4A1⊕E3⊕E5E1⊕E2⊕E4A1⊕E2⊕E3⊕E5More
E5 A1⊕E1E4⊕E5A1⊕E1⊕E2E3⊕E4⊕E5A1⊕E1⊕E2⊕E3More



Spherical harmonics and Multipoles
Symmetric Powers of Γxyz


Spherical Harmonics Yl / Multipole Symmetric Power [Γl(xyz)]
l 2l+1 Multipole Symmetry Rank l(xyz)]
s (l=0) 1 Monopole A1 1 A1
p (l=1) 3 Dipole A1⊕E1 3 A1⊕E1
d (l=2) 5 Quadrupole A1⊕E1⊕E2 6 2A1⊕E1⊕E2
f (l=3) 7 Octupole A1⊕E1⊕E2⊕E3 10 2A1⊕2E1⊕E2⊕E3
g (l=4) 9 Hexadecapole A1⊕E1⊕E2⊕E3⊕E4 15 3A1⊕2E1⊕2E2⊕E3⊕E4
h (l=5) 11 Dotricontapole A1⊕E1⊕E2⊕E3⊕E4⊕E5 21 3A1⊕3E1⊕2E2⊕2E3⊕E4⊕E5
i (l=6) 13 Tetrahexacontapole A1⊕E1⊕E2⊕E3⊕E4⊕2E5 28 4A1⊕3E1⊕3E2⊕2E3⊕2E4⊕2E5
j (l=7) 15 Octacosahectapole A1⊕E1⊕E2⊕E3⊕2E4⊕2E5 36 4A1⊕4E1⊕3E2⊕3E3⊕3E4⊕3E5
k (l=8) 17 256-pole A1⊕E1⊕E2⊕2E3⊕2E4⊕2E5 45 5A1⊕4E1⊕4E2⊕4E3⊕4E4⊕4E5
l (l=9) 19 512-pole A1⊕E1⊕2E2⊕2E3⊕2E4⊕2E5 55 5A1⊕5E1⊕5E2⊕5E3⊕5E4⊕5E5
m (l=10) 21 1024-pole A1⊕2E1⊕2E2⊕2E3⊕2E4⊕2E5 66 6A1⊕6E1⊕6E2⊕6E3⊕6E4⊕6E5
n (l=11) 23 2048-pole 2A1⊕A2⊕2E1⊕2E2⊕2E3⊕2E4⊕2E5 78 7A1⊕A2⊕7E1⊕7E2⊕7E3⊕7E4⊕7E5
o (l=12) 25 4096-pole 2A1⊕A2⊕3E1⊕2E2⊕2E3⊕2E4⊕2E5 91 8A1⊕A2⊕9E1⊕8E2⊕8E3⊕8E4⊕8E5
More

First nonvanshing multipole: Dipole

Further Reading

  • A. Gelessus, W. Thiel, W. Weber. J. Chem. Educ. 72 505 (1995)
    Multipoles and symmetry




Ligand Field, dn term splitting


Term symbols for electronic configurations dn
dn Term Symbols
d1 = d9 2D
d2 = d8 1S, 1D, 1G, 3P, 3F
d3 = d7 2P, 2D (2), 2F, 2G, 2H, 4P, 4F
d4 = d6 1S (2), 1D (2), 1F, 1G (2), 1I, 3P (2), 3D, 3F (2), 3G, 3H, 5D
d5 2S, 2P, 2D (3), 2F (2), 2G (2), 2H, 2I, 4P, 4D, 4F, 4G, 6S


Term splitting in point group C11v
L 2L+1 Term Splitting
S (L=0) 1 A1
P (L=1) 3 A2⊕E1
D (L=2) 5 A1⊕E1⊕E2
F (L=3) 7 A2⊕E1⊕E2⊕E3
G (L=4) 9 A1⊕E1⊕E2⊕E3⊕E4
H (L=5) 11 A2⊕E1⊕E2⊕E3⊕E4⊕E5
I (L=6) 13 A1⊕E1⊕E2⊕E3⊕E4⊕2E5


Last update August, 12th 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement