Results for Point Group D14h



Symmetric powers of degenerate representation E5u
Vibrational overtones


Characters of symmetric powers
Power
To
E 2C14 2C7 2(C14)3 2(C7)2 2(C14)5 2(C7)3 C2 7C'2 7C''2 i 2(S7)3 2(S14)5 2(S7)5 2(S14)3 2S7 2S14 σh d v
1 2 -1.247 -0.445 1.802 -1.802 0.445 1.247 -2 0 0 -2 1.247 0.445 -1.802 1.802 -0.445 -1.247 2 0 0
2 3 0.555 -0.802 2.247 2.247 -0.802 0.555 3 1 1 3 0.555 -0.802 2.247 2.247 -0.802 0.555 3 1 1
3 4 0.555 0.802 2.247 -2.247 -0.802 -0.555 -4 0 0 -4 -0.555 -0.802 -2.247 2.247 0.802 0.555 4 0 0
4 5 -1.247 0.445 1.802 1.802 0.445 -1.247 5 1 1 5 -1.247 0.445 1.802 1.802 0.445 -1.247 5 1 1
5 6 1.000 -1.000 1.000 -1.000 1.000 -1.000 -6 0 0 -6 -1.000 1.000 -1.000 1.000 -1.000 1.000 6 0 0
6 7 0.000 0.000 0.000 0.000 -0.000 -0.000 7 1 1 7 0.000 0.000 0.000 0.000 -0.000 -0.000 7 1 1
7 8 -1.000 1.000 -1.000 1.000 -1.000 1.000 -8 0 0 -8 1.000 -1.000 1.000 -1.000 1.000 -1.000 8 0 0
8 9 1.247 -0.445 -1.802 -1.802 -0.445 1.247 9 1 1 9 1.247 -0.445 -1.802 -1.802 -0.445 1.247 9 1 1
9 10 -0.555 -0.802 -2.247 2.247 0.802 0.555 -10 0 0 -10 0.555 0.802 2.247 -2.247 -0.802 -0.555 10 0 0
10 11 -0.555 0.802 -2.247 -2.247 0.802 -0.555 11 1 1 11 -0.555 0.802 -2.247 -2.247 0.802 -0.555 11 1 1
11 12 1.247 0.445 -1.802 1.802 -0.445 -1.247 -12 0 0 -12 -1.247 -0.445 1.802 -1.802 0.445 1.247 12 0 0
12 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 13 1 1 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 13 1 1
13 14 -0.000 0.000 -0.000 0.000 0.000 -0.000 -14 0 0 -14 0.000 -0.000 0.000 -0.000 -0.000 0.000 14 0 0
14 15 1.000 1.000 1.000 1.000 1.000 1.000 15 1 1 15 1.000 1.000 1.000 1.000 1.000 1.000 15 1 1
15 16 -1.247 -0.445 1.802 -1.802 0.445 1.247 -16 0 0 -16 1.247 0.445 -1.802 1.802 -0.445 -1.247 16 0 0
16 17 0.555 -0.802 2.247 2.247 -0.802 0.555 17 1 1 17 0.555 -0.802 2.247 2.247 -0.802 0.555 17 1 1
17 18 0.555 0.802 2.247 -2.247 -0.802 -0.555 -18 0 0 -18 -0.555 -0.802 -2.247 2.247 0.802 0.555 18 0 0
18 19 -1.247 0.445 1.802 1.802 0.445 -1.247 19 1 1 19 -1.247 0.445 1.802 1.802 0.445 -1.247 19 1 1
19 20 1.000 -1.000 1.000 -1.000 1.000 -1.000 -20 0 0 -20 -1.000 1.000 -1.000 1.000 -1.000 1.000 20 0 0
20 21 0.000 0.000 0.000 0.000 -0.000 -0.000 21 1 1 21 0.000 0.000 0.000 0.000 -0.000 -0.000 21 1 1


Decomposition to irreducible representations
Power
To
A1g A2g B1g B2g E1g E2g E3g E4g E5g E6g A1u A2u B1u B2u E1u E2u E3u E4u E5u E6u
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 E5u
2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 A1g⊕E4g
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 E1u⊕E5u
4 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 A1g⊕E4g⊕E6g
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 E1u⊕E3u⊕E5u
6 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 A1g⊕E2g⊕E4g⊕E6g
7 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 B1u⊕B2u⊕E1u⊕E3u⊕E5u
8 1 0 0 0 0 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 A1g⊕2E2g⊕E4g⊕E6g
9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 2 0 1 0 B1u⊕B2u⊕E1u⊕2E3u⊕E5u
10 1 0 0 0 0 2 0 1 0 2 0 0 0 0 0 0 0 0 0 0 A1g⊕2E2g⊕E4g⊕2E6g
11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 2 0 1 0 B1u⊕B2u⊕2E1u⊕2E3u⊕E5u
12 1 0 0 0 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 A1g⊕2E2g⊕2E4g⊕2E6g
13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 2 0 2 0 B1u⊕B2u⊕2E1u⊕2E3u⊕2E5u
14 2 1 0 0 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 2A1g⊕A2g⊕2E2g⊕2E4g⊕2E6g
15 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 2 0 3 0 B1u⊕B2u⊕2E1u⊕2E3u⊕3E5u
16 2 1 0 0 0 2 0 3 0 2 0 0 0 0 0 0 0 0 0 0 2A1g⊕A2g⊕2E2g⊕3E4g⊕2E6g
17 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 0 2 0 3 0 B1u⊕B2u⊕3E1u⊕2E3u⊕3E5u
18 2 1 0 0 0 2 0 3 0 3 0 0 0 0 0 0 0 0 0 0 2A1g⊕A2g⊕2E2g⊕3E4g⊕3E6g
19 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 0 3 0 3 0 B1u⊕B2u⊕3E1u⊕3E3u⊕3E5u
20 2 1 0 0 0 3 0 3 0 3 0 0 0 0 0 0 0 0 0 0 2A1g⊕A2g⊕3E2g⊕3E4g⊕3E6g



Last update January, 3rd 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement