Results for Point Group D14h



Symmetric powers of degenerate representation E4u
Vibrational overtones


Characters of symmetric powers
Power
To
E 2C14 2C7 2(C14)3 2(C7)2 2(C14)5 2(C7)3 C2 7C'2 7C''2 i 2(S7)3 2(S14)5 2(S7)5 2(S14)3 2S7 2S14 σh d v
1 2 -0.445 -1.802 1.247 1.247 -1.802 -0.445 2 0 0 -2 0.445 1.802 -1.247 -1.247 1.802 0.445 -2 0 0
2 3 -0.802 2.247 0.555 0.555 2.247 -0.802 3 1 1 3 -0.802 2.247 0.555 0.555 2.247 -0.802 3 1 1
3 4 0.802 -2.247 -0.555 -0.555 -2.247 0.802 4 0 0 -4 -0.802 2.247 0.555 0.555 2.247 -0.802 -4 0 0
4 5 0.445 1.802 -1.247 -1.247 1.802 0.445 5 1 1 5 0.445 1.802 -1.247 -1.247 1.802 0.445 5 1 1
5 6 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 6 0 0 -6 1.000 1.000 1.000 1.000 1.000 1.000 -6 0 0
6 7 -0.000 0.000 0.000 0.000 -0.000 0.000 7 1 1 7 -0.000 0.000 0.000 0.000 -0.000 0.000 7 1 1
7 8 1.000 1.000 1.000 1.000 1.000 1.000 8 0 0 -8 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -8 0 0
8 9 -0.445 -1.802 1.247 1.247 -1.802 -0.445 9 1 1 9 -0.445 -1.802 1.247 1.247 -1.802 -0.445 9 1 1
9 10 -0.802 2.247 0.555 0.555 2.247 -0.802 10 0 0 -10 0.802 -2.247 -0.555 -0.555 -2.247 0.802 -10 0 0
10 11 0.802 -2.247 -0.555 -0.555 -2.247 0.802 11 1 1 11 0.802 -2.247 -0.555 -0.555 -2.247 0.802 11 1 1
11 12 0.445 1.802 -1.247 -1.247 1.802 0.445 12 0 0 -12 -0.445 -1.802 1.247 1.247 -1.802 -0.445 -12 0 0
12 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 13 1 1 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 13 1 1
13 14 -0.000 0.000 0.000 -0.000 -0.000 0.000 14 0 0 -14 0.000 -0.000 -0.000 0.000 0.000 -0.000 -14 0 0
14 15 1.000 1.000 1.000 1.000 1.000 1.000 15 1 1 15 1.000 1.000 1.000 1.000 1.000 1.000 15 1 1
15 16 -0.445 -1.802 1.247 1.247 -1.802 -0.445 16 0 0 -16 0.445 1.802 -1.247 -1.247 1.802 0.445 -16 0 0
16 17 -0.802 2.247 0.555 0.555 2.247 -0.802 17 1 1 17 -0.802 2.247 0.555 0.555 2.247 -0.802 17 1 1
17 18 0.802 -2.247 -0.555 -0.555 -2.247 0.802 18 0 0 -18 -0.802 2.247 0.555 0.555 2.247 -0.802 -18 0 0
18 19 0.445 1.802 -1.247 -1.247 1.802 0.445 19 1 1 19 0.445 1.802 -1.247 -1.247 1.802 0.445 19 1 1
19 20 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 20 0 0 -20 1.000 1.000 1.000 1.000 1.000 1.000 -20 0 0
20 21 -0.000 0.000 0.000 -0.000 -0.000 0.000 21 1 1 21 -0.000 0.000 0.000 -0.000 -0.000 0.000 21 1 1


Decomposition to irreducible representations
Power
To
A1g A2g B1g B2g E1g E2g E3g E4g E5g E6g A1u A2u B1u B2u E1u E2u E3u E4u E5u E6u
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 E4u
2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 A1g⊕E6g
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 E2u⊕E4u
4 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 A1g⊕E2g⊕E6g
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 E2u⊕E4u⊕E6u
6 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 A1g⊕E2g⊕E4g⊕E6g
7 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 A1u⊕A2u⊕E2u⊕E4u⊕E6u
8 1 0 0 0 0 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 A1g⊕E2g⊕2E4g⊕E6g
9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 2 A1u⊕A2u⊕E2u⊕E4u⊕2E6u
10 1 0 0 0 0 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 A1g⊕2E2g⊕2E4g⊕E6g
11 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 0 1 0 2 A1u⊕A2u⊕2E2u⊕E4u⊕2E6u
12 1 0 0 0 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 A1g⊕2E2g⊕2E4g⊕2E6g
13 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 0 2 0 2 A1u⊕A2u⊕2E2u⊕2E4u⊕2E6u
14 2 1 0 0 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 2A1g⊕A2g⊕2E2g⊕2E4g⊕2E6g
15 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 0 3 0 2 A1u⊕A2u⊕2E2u⊕3E4u⊕2E6u
16 2 1 0 0 0 2 0 2 0 3 0 0 0 0 0 0 0 0 0 0 2A1g⊕A2g⊕2E2g⊕2E4g⊕3E6g
17 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 3 0 3 0 2 A1u⊕A2u⊕3E2u⊕3E4u⊕2E6u
18 2 1 0 0 0 3 0 2 0 3 0 0 0 0 0 0 0 0 0 0 2A1g⊕A2g⊕3E2g⊕2E4g⊕3E6g
19 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 3 0 3 0 3 A1u⊕A2u⊕3E2u⊕3E4u⊕3E6u
20 2 1 0 0 0 3 0 3 0 3 0 0 0 0 0 0 0 0 0 0 2A1g⊕A2g⊕3E2g⊕3E4g⊕3E6g



Last update January, 3rd 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement