Results for Point Group C11v
Force field analysis
Allowed / forbidden vibronational transitions
Operator |
A1 |
A2 |
E1 |
E2 |
E3 |
E4 |
E5 |
Total |
Linear (IR) |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 / 0 |
Quadratic (Raman) |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 / 0 |
IR + Raman |
0 |
0 |
0 |
- - - - |
0 |
0 |
0 |
0 / 0 |
Characters of force fields
(Symmetric powers of vibration representation)
Force field |
E |
2C11 |
2(C11)2 |
2(C11)3 |
2(C11)4 |
2(C11)5 |
11σv |
linear |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
quadratic |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
cubic |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
quartic |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
quintic |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
sextic |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
Decomposition to irreducible representations
Column with number of nonvanshing force constants highlighted
Force field |
A1 |
A2 |
E1 |
E2 |
E3 |
E4 |
E5 |
linear |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
quadratic |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
cubic |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
quartic |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
quintic |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
sextic |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Further Reading
- J.K.G. Watson, J. Mol. Spec. 41 229 (1972)
The Numbers of Structural Parameters and Potential Constants of Molecules
- X.F. Zhou, P. Pulay. J. Comp. Chem. 10 No. 7, 935-938 (1989)
Characters for Symmetric and Antisymmetric Higher Powers of Representations:
Application to the Number of Anharmonic Force Constants in Symmetrical Molecules
- F. Varga, L. Nemes, J.K.G. Watson. J. Phys. B: At. Mol. Opt. Phys. 10 No. 7, 5043-5048 (1996)
The number of anharmonic potential constants of the fullerenes C60 and C70
Contributions to nonvanishing force field constants
pos(X) : Position of irreducible representation (irrep) X in character table of C11v
Subtotal: <Number of nonvanishing force constants in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Number of nonvanishing force constants in force field> / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>
Contributions to nonvanishing quadratic force field constants
Irrep combinations (i,i) with indices: pos(A1) ≤ i ≤ pos(E5) |
Subtotal: 0 / 0 / 7 |
Irrep combinations (i,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E5) |
Subtotal: 0 / 0 / 21 |
Total: 0 / 0 / 28 |
Contributions to nonvanishing cubic force field constants
Irrep combinations (i,i,i) with indices: pos(A1) ≤ i ≤ pos(E5) |
Subtotal: 0 / 0 / 7 |
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E5) |
Subtotal: 0 / 0 / 42 |
Irrep combinations (i,j,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(E5) |
Subtotal: 0 / 0 / 35 |
Total: 0 / 0 / 84 |
Contributions to nonvanishing quartic force field constants
Irrep combinations (i,i,i,i) with indices: pos(A1) ≤ i ≤ pos(E5) |
Subtotal: 0 / 0 / 7 |
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E5) |
Subtotal: 0 / 0 / 42 |
Irrep combinations (i,i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E5) |
Subtotal: 0 / 0 / 21 |
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(E5) |
Subtotal: 0 / 0 / 105 |
Irrep combinations (i,j,k,l) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ l ≤ pos(E5) |
Subtotal: 0 / 0 / 35 |
Total: 0 / 0 / 210 |
Calculate contributions to
Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement