Reduction formula for point group I

Your representation

E 12C5 12(C5)2 20C3 15C2
180 0.0000 -0.0000 0 0

can be reduced to

A T1 T2 G H
3 9 9 12 15

Substraction of translational and rotational contributions results in

A T1 T2 G H
3 7 9 12 15



Force field analysis

Infrared and Raman activities (harmonic approximation)
Method A T1 T2 G H
Infrared - + - - -
Raman + - - - +

Number of force field parameters
Force field No. 1 No. 2 No. 3
linear 174 174 3
quadratic 30276 15225 277
cubic 5268024 893200 14948
quartic 916636176 39524100 659737
No. 1 : Total number of force constants .
No. 2 : Total number of force constants k.
No. 3 : Total number of nonvanishing force constants k.

Symmetry properties of force field parameters
Force field A T1 T2 G H
linear 3 7 9 12 15
quadratic 277 741 738 1014 1291
cubic 14948 44614 44616 59568 74458
quartic 659737 1975206 1975203 2634939 3294676

Number of independant internal coordinates 3

Literature




Character tables for chemically important point groups Character table for point group I Jacobs University Bremen