Results for Point Group S14



Symmetric powers of degenerate representation E2u
Vibrational overtones


Characters of symmetric powers
Power
To
E C7 (C7)2 (C7)3 (C7)4 (C7)5 (C7)6 i (S14)9 (S14)11 (S14)13 S14 (S14)3 (S14)5
1 2 -0.445 -1.802 1.247 1.247 -1.802 -0.445 -2 0.445 1.802 -1.247 -1.247 1.802 0.445
2 3 -0.802 2.247 0.555 0.555 2.247 -0.802 3 -0.802 2.247 0.555 0.555 2.247 -0.802
3 4 0.802 -2.247 -0.555 -0.555 -2.247 0.802 -4 -0.802 2.247 0.555 0.555 2.247 -0.802
4 5 0.445 1.802 -1.247 -1.247 1.802 0.445 5 0.445 1.802 -1.247 -1.247 1.802 0.445
5 6 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -6 1.000 1.000 1.000 1.000 1.000 1.000
6 7 -0.000 0.000 0.000 -0.000 -0.000 0.000 7 -0.000 0.000 0.000 -0.000 -0.000 0.000
7 8 1.000 1.000 1.000 1.000 1.000 1.000 -8 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
8 9 -0.445 -1.802 1.247 1.247 -1.802 -0.445 9 -0.445 -1.802 1.247 1.247 -1.802 -0.445
9 10 -0.802 2.247 0.555 0.555 2.247 -0.802 -10 0.802 -2.247 -0.555 -0.555 -2.247 0.802
10 11 0.802 -2.247 -0.555 -0.555 -2.247 0.802 11 0.802 -2.247 -0.555 -0.555 -2.247 0.802
11 12 0.445 1.802 -1.247 -1.247 1.802 0.445 -12 -0.445 -1.802 1.247 1.247 -1.802 -0.445
12 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
13 14 -0.000 0.000 0.000 -0.000 -0.000 0.000 -14 0.000 -0.000 -0.000 0.000 0.000 -0.000
14 15 1.000 1.000 1.000 1.000 1.000 1.000 15 1.000 1.000 1.000 1.000 1.000 1.000
15 16 -0.445 -1.802 1.247 1.247 -1.802 -0.445 -16 0.445 1.802 -1.247 -1.247 1.802 0.445
16 17 -0.802 2.247 0.555 0.555 2.247 -0.802 17 -0.802 2.247 0.555 0.555 2.247 -0.802
17 18 0.802 -2.247 -0.555 -0.555 -2.247 0.802 -18 -0.802 2.247 0.555 0.555 2.247 -0.802
18 19 0.445 1.802 -1.247 -1.247 1.802 0.445 19 0.445 1.802 -1.247 -1.247 1.802 0.445
19 20 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -20 1.000 1.000 1.000 1.000 1.000 1.000
20 21 -0.000 0.000 0.000 -0.000 -0.000 0.000 21 -0.000 0.000 0.000 -0.000 -0.000 0.000


Decomposition to irreducible representations
Power
To
Ag E1g* E2g* E3g* Au E1u* E2u* E3u*
1 0 0 0 0 0 0 1 0 E2u
2 1 0 0 1 0 0 0 0 Ag⊕E3g
3 0 0 0 0 0 1 1 0 E1u⊕E2u
4 1 1 0 1 0 0 0 0 Ag⊕E1g⊕E3g
5 0 0 0 0 0 1 1 1 E1u⊕E2u⊕E3u
6 1 1 1 1 0 0 0 0 Ag⊕E1g⊕E2g⊕E3g
7 0 0 0 0 2 1 1 1 2Au⊕E1u⊕E2u⊕E3u
8 1 1 2 1 0 0 0 0 Ag⊕E1g⊕2E2g⊕E3g
9 0 0 0 0 2 1 1 2 2Au⊕E1u⊕E2u⊕2E3u
10 1 2 2 1 0 0 0 0 Ag⊕2E1g⊕2E2g⊕E3g
11 0 0 0 0 2 2 1 2 2Au⊕2E1u⊕E2u⊕2E3u
12 1 2 2 2 0 0 0 0 Ag⊕2E1g⊕2E2g⊕2E3g
13 0 0 0 0 2 2 2 2 2Au⊕2E1u⊕2E2u⊕2E3u
14 3 2 2 2 0 0 0 0 3Ag⊕2E1g⊕2E2g⊕2E3g
15 0 0 0 0 2 2 3 2 2Au⊕2E1u⊕3E2u⊕2E3u
16 3 2 2 3 0 0 0 0 3Ag⊕2E1g⊕2E2g⊕3E3g
17 0 0 0 0 2 3 3 2 2Au⊕3E1u⊕3E2u⊕2E3u
18 3 3 2 3 0 0 0 0 3Ag⊕3E1g⊕2E2g⊕3E3g
19 0 0 0 0 2 3 3 3 2Au⊕3E1u⊕3E2u⊕3E3u
20 3 3 3 3 0 0 0 0 3Ag⊕3E1g⊕3E2g⊕3E3g



Last update January, 3rd 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement