Results for Point Group S30



Characters of symmetric power
Power
To
E C15 (C15)2 C5 (C15)4 C3 (C5)2 (C15)7 (C15)8 (C5)3 (C3)2 (C15)11 (C5)4 (C15)13 (C15)14 i (S30)17 (S30)19 (S10)7 (S30)23 (S6)5 (S10)9 (S30)29 S30 S10 S6 (S30)7 (S10)3 (S30)11 (S30)13
1 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
2 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
3 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
4 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
5 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
6 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000


Decomposition to irreducible representations
Column for irrep E126212232u highlighted
Power
To
Ag E1g* E2g* E3g* E4g* E5g* E6g* E7g* Au E1u* E2u* E3u* E4u* E5u* E6u* E7u*
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Contributions to irrep E126212232u


pos(X) : Position of irreducible representation (irrep) X in character table of S30

Subtotal: <Contributions to irrep E126212232u in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Contributions to irrep E126212232u> / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>


Contributions to irrep E126212232u for symmetric power to 2
Irrep combinations (i,i) with indices: pos(Ag) ≤ i ≤ pos(E7u)
Subtotal: 0 / 0 / 16
Irrep combinations (i,j) with indices: pos(Ag) ≤ i ≤ j ≤ pos(E7u)
Subtotal: 0 / 0 / 120
Total: 0 / 0 / 136


Contributions to irrep E126212232u for symmetric power to 3
Irrep combinations (i,i,i) with indices: pos(Ag) ≤ i ≤ pos(E7u)
Subtotal: 0 / 0 / 16
Irrep combinations (i,i,j) (i,j,j) with indices: pos(Ag) ≤ i ≤ j ≤ pos(E7u)
Subtotal: 0 / 0 / 240
Irrep combinations (i,j,k) with indices: pos(Ag) ≤ i ≤ j ≤ k ≤ pos(E7u)
Subtotal: 0 / 0 / 560
Total: 0 / 0 / 816


Contributions to irrep E126212232u for symmetric power to 4
Irrep combinations (i,i,i,i) with indices: pos(Ag) ≤ i ≤ pos(E7u)
Subtotal: 0 / 0 / 16
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(Ag) ≤ i ≤ j ≤ pos(E7u)
Subtotal: 0 / 0 / 240
Irrep combinations (i,i,j,j) with indices: pos(Ag) ≤ i ≤ j ≤ pos(E7u)
Subtotal: 0 / 0 / 120
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(Ag) ≤ i ≤ j ≤ k ≤ pos(E7u)
Subtotal: 0 / 0 / 1.680
Irrep combinations (i,j,k,l) with indices: pos(Ag) ≤ i ≤ j ≤ k ≤ l ≤ pos(E7u)
Subtotal: 0 / 0 / 1.820
Total: 0 / 0 / 3.876


Calculate contributions to

Ag E1g E2g E3g E4g E5g E6g E7g Au E1u E2u E3u E4u E5u E6u E7u
Show only nonzero contributions Show all contributions






Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement