✅
S28 | E | S28 | C14 | (S28)3 | C7 | (S28)5 | (C14)3 | S4 | (C7)2 | (S28)9 | (C14)5 | (S28)11 | (C7)3 | (S28)13 | C2 | (S28)15 | (C7)4 | (S28)17 | (C14)9 | (S28)19 | (C7)5 | (S4)3 | (C14)11 | (S28)23 | (C7)6 | (S28)25 | (C14)13 | (S28)27 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
B | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 |
E1* | 1 1 |
ε* ε* |
ε2* ε2* |
ε3* ε3* |
ε4* ε4* |
ε5* ε5* |
ε6* ε6* |
i -i |
-ε6* -ε6* |
-ε5* -ε5* |
-ε4* -ε4* |
-ε3* -ε3* |
-ε2* -ε2* |
-ε* -ε* |
-1 -1 |
-ε* -ε* |
-ε2* -ε2* |
-ε3* -ε3* |
-ε4* -ε4* |
-ε5* -ε5* |
-ε6* -ε6* |
-i i |
ε6* ε6* |
ε5* ε5* |
ε4* ε4* |
ε3* ε3* |
ε2* ε2* |
ε* ε* |
E2* | 1 1 |
ε2* ε2* |
ε4* ε4* |
ε6* ε6* |
-ε6* -ε6* |
-ε4* -ε4* |
-ε2* -ε2* |
-1 -1 |
-ε2* -ε2* |
-ε4* -ε4* |
-ε6* -ε6* |
ε6* ε6* |
ε4* ε4* |
ε2* ε2* |
1 1 |
ε2* ε2* |
ε4* ε4* |
ε6* ε6* |
-ε6* -ε6* |
-ε4* -ε4* |
-ε2* -ε2* |
-1 -1 |
-ε2* -ε2* |
-ε4* -ε4* |
-ε6* -ε6* |
ε6* ε6* |
ε4* ε4* |
ε2* ε2* |
E3* | 1 1 |
ε3* ε3* |
ε6* ε6* |
-ε5* -ε5* |
-ε2* -ε2* |
-ε* -ε* |
-ε4* -ε4* |
-i i |
ε4* ε4* |
ε* ε* |
ε2* ε2* |
ε5* ε5* |
-ε6* -ε6* |
-ε3* -ε3* |
-1 -1 |
-ε3* -ε3* |
-ε6* -ε6* |
ε5* ε5* |
ε2* ε2* |
ε* ε* |
ε4* ε4* |
i -i |
-ε4* -ε4* |
-ε* -ε* |
-ε2* -ε2* |
-ε5* -ε5* |
ε6* ε6* |
ε3* ε3* |
E4* | 1 1 |
ε4* ε4* |
-ε6* -ε6* |
-ε2* -ε2* |
-ε2* -ε2* |
-ε6* -ε6* |
ε4* ε4* |
1 1 |
ε4* ε4* |
-ε6* -ε6* |
-ε2* -ε2* |
-ε2* -ε2* |
-ε6* -ε6* |
ε4* ε4* |
1 1 |
ε4* ε4* |
-ε6* -ε6* |
-ε2* -ε2* |
-ε2* -ε2* |
-ε6* -ε6* |
ε4* ε4* |
1 1 |
ε4* ε4* |
-ε6* -ε6* |
-ε2* -ε2* |
-ε2* -ε2* |
-ε6* -ε6* |
ε4* ε4* |
E5* | 1 1 |
ε5* ε5* |
-ε4* -ε4* |
-ε* -ε* |
-ε6* -ε6* |
ε3* ε3* |
ε2* ε2* |
i -i |
-ε2* -ε2* |
-ε3* -ε3* |
ε6* ε6* |
ε* ε* |
ε4* ε4* |
-ε5* -ε5* |
-1 -1 |
-ε5* -ε5* |
ε4* ε4* |
ε* ε* |
ε6* ε6* |
-ε3* -ε3* |
-ε2* -ε2* |
-i i |
ε2* ε2* |
ε3* ε3* |
-ε6* -ε6* |
-ε* -ε* |
-ε4* -ε4* |
ε5* ε5* |
E6* | 1 1 |
ε6* ε6* |
-ε2* -ε2* |
-ε4* -ε4* |
ε4* ε4* |
ε2* ε2* |
-ε6* -ε6* |
-1 -1 |
-ε6* -ε6* |
ε2* ε2* |
ε4* ε4* |
-ε4* -ε4* |
-ε2* -ε2* |
ε6* ε6* |
1 1 |
ε6* ε6* |
-ε2* -ε2* |
-ε4* -ε4* |
ε4* ε4* |
ε2* ε2* |
-ε6* -ε6* |
-1 -1 |
-ε6* -ε6* |
ε2* ε2* |
ε4* ε4* |
-ε4* -ε4* |
-ε2* -ε2* |
ε6* ε6* |
E7* | 1 1 |
i -i |
-1 -1 |
-i i |
1 1 |
i -i |
-1 -1 |
-i i |
1 1 |
i -i |
-1 -1 |
-i i |
1 1 |
i -i |
-1 -1 |
-i i |
1 1 |
i -i |
-1 -1 |
-i i |
1 1 |
i -i |
-1 -1 |
-i i |
1 1 |
i -i |
-1 -1 |
-i i |
E8* | 1 1 |
-ε6* -ε6* |
-ε2* -ε2* |
ε4* ε4* |
ε4* ε4* |
-ε2* -ε2* |
-ε6* -ε6* |
1 1 |
-ε6* -ε6* |
-ε2* -ε2* |
ε4* ε4* |
ε4* ε4* |
-ε2* -ε2* |
-ε6* -ε6* |
1 1 |
-ε6* -ε6* |
-ε2* -ε2* |
ε4* ε4* |
ε4* ε4* |
-ε2* -ε2* |
-ε6* -ε6* |
1 1 |
-ε6* -ε6* |
-ε2* -ε2* |
ε4* ε4* |
ε4* ε4* |
-ε2* -ε2* |
-ε6* -ε6* |
E9* | 1 1 |
-ε5* -ε5* |
-ε4* -ε4* |
ε* ε* |
-ε6* -ε6* |
-ε3* -ε3* |
ε2* ε2* |
i -i |
-ε2* -ε2* |
ε3* ε3* |
ε6* ε6* |
-ε* -ε* |
ε4* ε4* |
ε5* ε5* |
-1 -1 |
ε5* ε5* |
ε4* ε4* |
-ε* -ε* |
ε6* ε6* |
ε3* ε3* |
-ε2* -ε2* |
-i i |
ε2* ε2* |
-ε3* -ε3* |
-ε6* -ε6* |
ε* ε* |
-ε4* -ε4* |
-ε5* -ε5* |
E10* | 1 1 |
-ε4* -ε4* |
-ε6* -ε6* |
ε2* ε2* |
-ε2* -ε2* |
ε6* ε6* |
ε4* ε4* |
-1 -1 |
ε4* ε4* |
ε6* ε6* |
-ε2* -ε2* |
ε2* ε2* |
-ε6* -ε6* |
-ε4* -ε4* |
1 1 |
-ε4* -ε4* |
-ε6* -ε6* |
ε2* ε2* |
-ε2* -ε2* |
ε6* ε6* |
ε4* ε4* |
-1 -1 |
ε4* ε4* |
ε6* ε6* |
-ε2* -ε2* |
ε2* ε2* |
-ε6* -ε6* |
-ε4* -ε4* |
E11* | 1 1 |
-ε3* -ε3* |
ε6* ε6* |
ε5* ε5* |
-ε2* -ε2* |
ε* ε* |
-ε4* -ε4* |
-i i |
ε4* ε4* |
-ε* -ε* |
ε2* ε2* |
-ε5* -ε5* |
-ε6* -ε6* |
ε3* ε3* |
-1 -1 |
ε3* ε3* |
-ε6* -ε6* |
-ε5* -ε5* |
ε2* ε2* |
-ε* -ε* |
ε4* ε4* |
i -i |
-ε4* -ε4* |
ε* ε* |
-ε2* -ε2* |
ε5* ε5* |
ε6* ε6* |
-ε3* -ε3* |
E12* | 1 1 |
-ε2* -ε2* |
ε4* ε4* |
-ε6* -ε6* |
-ε6* -ε6* |
ε4* ε4* |
-ε2* -ε2* |
1 1 |
-ε2* -ε2* |
ε4* ε4* |
-ε6* -ε6* |
-ε6* -ε6* |
ε4* ε4* |
-ε2* -ε2* |
1 1 |
-ε2* -ε2* |
ε4* ε4* |
-ε6* -ε6* |
-ε6* -ε6* |
ε4* ε4* |
-ε2* -ε2* |
1 1 |
-ε2* -ε2* |
ε4* ε4* |
-ε6* -ε6* |
-ε6* -ε6* |
ε4* ε4* |
-ε2* -ε2* |
E13* | 1 1 |
-ε* -ε* |
ε2* ε2* |
-ε3* -ε3* |
ε4* ε4* |
-ε5* -ε5* |
ε6* ε6* |
i -i |
-ε6* -ε6* |
ε5* ε5* |
-ε4* -ε4* |
ε3* ε3* |
-ε2* -ε2* |
ε* ε* |
-1 -1 |
ε* ε* |
-ε2* -ε2* |
ε3* ε3* |
-ε4* -ε4* |
ε5* ε5* |
-ε6* -ε6* |
-i i |
ε6* ε6* |
-ε5* -ε5* |
ε4* ε4* |
-ε3* -ε3* |
ε2* ε2* |
-ε* -ε* |
Number of symmetry elements | h = 28 |
Number of classes, irreps | n = 28 |
Number of real-valued irreducible representations | n = 15 |
Abelian group | yes |
Optical Isomerism (Chirality) | no |
Polar | no |
Parity | no |