Results for Point Group S28



Characters of symmetric power
Power
To
E S28 C14 (S28)3 C7 (S28)5 (C14)3 S4 (C7)2 (S28)9 (C14)5 (S28)11 (C7)3 (S28)13 C2 (S28)15 (C7)4 (S28)17 (C14)9 (S28)19 (C7)5 (S4)3 (C14)11 (S28)23 (C7)6 (S28)25 (C14)13 (S28)27
1 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
2 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
3 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
4 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
5 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
6 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000


Decomposition to irreducible representations
Column for irrep highlighted
Power
To
A B E1* E2* E3* E4* E5* E6* E7* E8* E9* E10* E11* E12* E13*
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Contributions to irrep


pos(X) : Position of irreducible representation (irrep) X in character table of S28

Subtotal: <Contributions to irrep in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Contributions to irrep > / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>


Contributions to irrep for symmetric power to 2
Irrep combinations (i,i) with indices: pos(A) ≤ i ≤ pos(E13)
Subtotal: 0 / 0 / 15
Irrep combinations (i,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 105
Total: 0 / 0 / 120


Contributions to irrep for symmetric power to 3
Irrep combinations (i,i,i) with indices: pos(A) ≤ i ≤ pos(E13)
Subtotal: 0 / 0 / 15
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 210
Irrep combinations (i,j,k) with indices: pos(A) ≤ i ≤ j ≤ k ≤ pos(E13)
Subtotal: 0 / 0 / 455
Total: 0 / 0 / 680


Contributions to irrep for symmetric power to 4
Irrep combinations (i,i,i,i) with indices: pos(A) ≤ i ≤ pos(E13)
Subtotal: 0 / 0 / 15
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 210
Irrep combinations (i,i,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 105
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A) ≤ i ≤ j ≤ k ≤ pos(E13)
Subtotal: 0 / 0 / 1.365
Irrep combinations (i,j,k,l) with indices: pos(A) ≤ i ≤ j ≤ k ≤ l ≤ pos(E13)
Subtotal: 0 / 0 / 1.365
Total: 0 / 0 / 3.060


Calculate contributions to

A B E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13
Show only nonzero contributions Show all contributions






Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement