Results for Point Group S28



Characters of representations for molecular motions
Motion E S28 C14 (S28)3 C7 (S28)5 (C14)3 S4 (C7)2 (S28)9 (C14)5 (S28)11 (C7)3 (S28)13 C2 (S28)15 (C7)4 (S28)17 (C14)9 (S28)19 (C7)5 (S4)3 (C14)11 (S28)23 (C7)6 (S28)25 (C14)13 (S28)27
Cartesian 3N 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
Translation (x,y,z) 3 0.950 2.802 0.564 2.247 -0.132 1.445 -1 0.555 -1.868 -0.247 -2.564 -0.802 -2.950 -1 -2.950 -0.802 -2.564 -0.247 -1.868 0.555 -1 1.445 -0.132 2.247 0.564 2.802 0.950
Rotation (Rx,Ry,Rz) 3 -0.950 2.802 -0.564 2.247 0.132 1.445 1 0.555 1.868 -0.247 2.564 -0.802 2.950 -1 2.950 -0.802 2.564 -0.247 1.868 0.555 1 1.445 0.132 2.247 -0.564 2.802 -0.950
Vibration -6 0.000 -5.604 -0.000 -4.494 0.000 -2.890 0 -1.110 0.000 0.494 0.000 1.604 -0.000 2 -0.000 1.604 -0.000 0.494 -0.000 -1.110 0 -2.890 0.000 -4.494 0.000 -5.604 0.000


Decomposition to irreducible representations
Motion A B E1* E2* E3* E4* E5* E6* E7* E8* E9* E10* E11* E12* E13* Total
Cartesian 3N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Translation (x,y,z) 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2
Rotation (Rx,Ry,Rz) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
Vibration -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 -1 -4



Molecular parameter
Number of Atoms (N) 0
Number of internal coordinates -6
Number of independant internal coordinates -1
Number of vibrational modes -4


Force field analysis


Allowed / forbidden vibronational transitions
Operator A B E1* E2* E3* E4* E5* E6* E7* E8* E9* E10* E11* E12* E13* Total
Linear (IR) -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 -1 -2 / -2
Quadratic (Raman) -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 -1 -2 / -2
IR + Raman - - - - - - - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 - - - - 0 / 0


Characters of force fields
(Symmetric powers of vibration representation)
Force field E S28 C14 (S28)3 C7 (S28)5 (C14)3 S4 (C7)2 (S28)9 (C14)5 (S28)11 (C7)3 (S28)13 C2 (S28)15 (C7)4 (S28)17 (C14)9 (S28)19 (C7)5 (S4)3 (C14)11 (S28)23 (C7)6 (S28)25 (C14)13 (S28)27
linear -6 0.000 -5.604 -0.000 -4.494 0.000 -2.890 0 -1.110 0.000 0.494 0.000 1.604 -0.000 2 -0.000 1.604 -0.000 0.494 -0.000 -1.110 0 -2.890 0.000 -4.494 0.000 -5.604 0.000
quadratic 15 -2.802 13.455 -1.445 9.543 0.247 4.978 1 1.418 0.247 -0.433 -1.445 -0.961 -2.802 -1 -2.802 -0.961 -1.445 -0.433 0.247 1.418 1 4.978 0.247 9.543 -1.445 13.455 -2.802
cubic -20 -0.000 -17.702 0.000 -12.098 -0.000 -6.176 0 -2.616 0.000 -2.122 0.000 -3.286 0.000 -4 0.000 -3.286 0.000 -2.122 -0.000 -2.616 0 -6.176 0.000 -12.098 -0.000 -17.702 -0.000
quartic 15 2.802 13.455 1.445 9.543 -0.247 4.978 -1 1.418 -0.247 -0.433 1.445 -0.961 2.802 -1 2.802 -0.961 1.445 -0.433 -0.247 1.418 -1 4.978 -0.247 9.543 1.445 13.455 2.802
quintic -6 0.000 -5.604 -0.000 -4.494 0.000 -2.890 0 -1.110 -0.000 0.494 -0.000 1.604 -0.000 2 -0.000 1.604 -0.000 0.494 0.000 -1.110 0 -2.890 -0.000 -4.494 0.000 -5.604 0.000
sextic 1 -1.000 1.000 -1.000 1.000 -1.000 1.000 -1 1.000 -1.000 1.000 -1.000 1.000 -1.000 1 -1.000 1.000 -1.000 1.000 -1.000 1.000 -1 1.000 -1.000 1.000 -1.000 1.000 -1.000


Decomposition to irreducible representations
Column with number of nonvanshing force constants highlighted
Force field A B E1* E2* E3* E4* E5* E6* E7* E8* E9* E10* E11* E12* E13*
linear -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 -1
quadratic 2 3 2 0 0 0 0 0 0 0 0 0 0 1 2
cubic -4 -4 -2 -1 0 0 0 0 0 0 0 0 0 -1 -2
quartic 3 2 2 1 0 0 0 0 0 0 0 0 0 0 2
quintic -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 -1
sextic 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0


Further Reading



Contributions to nonvanishing force field constants


pos(X) : Position of irreducible representation (irrep) X in character table of S28

Subtotal: <Number of nonvanishing force constants in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Number of nonvanishing force constants in force field> / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>


Contributions to nonvanishing quadratic force field constants
Irrep combinations (i,i) with indices: pos(A) ≤ i ≤ pos(E13)
..1. E1E1...1. E13E13.
Subtotal: 2 / 2 / 15
Irrep combinations (i,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 105
Total: 2 / 2 / 120


Contributions to nonvanishing cubic force field constants
Irrep combinations (i,i,i) with indices: pos(A) ≤ i ≤ pos(E13)
Subtotal: 0 / 0 / 15
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
Subtotal: -2 / 0 / 210
Irrep combinations (i,j,k) with indices: pos(A) ≤ i ≤ j ≤ k ≤ pos(E13)
Subtotal: -2 / 0 / 455
Total: -4 / 0 / 680


Contributions to nonvanishing quartic force field constants
Irrep combinations (i,i,i,i) with indices: pos(A) ≤ i ≤ pos(E13)
Subtotal: 0 / 0 / 15
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 210
Irrep combinations (i,i,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
..1. E1E1E13E13.
Subtotal: 1 / 1 / 105
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A) ≤ i ≤ j ≤ k ≤ pos(E13)
Subtotal: 0 / 0 / 1.365
Irrep combinations (i,j,k,l) with indices: pos(A) ≤ i ≤ j ≤ k ≤ l ≤ pos(E13)
..2. ABE1E13.
Subtotal: 2 / 1 / 1.365
Total: 3 / 2 / 3.060


Calculate contributions to

A B E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13
Show only nonzero contributions Show all contributions






Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement