Results for Point Group D6d



Symmetric powers of degenerate representation E4
Vibrational overtones


Characters of symmetric powers
Power
To
E 2S12 2C6 2S4 2C3 2(S12)5 C2 6C'2 d
1 2 -1.000 -1 2 -1 -1.000 2 0 0
2 3 0.000 0 3 0 0.000 3 1 1
3 4 1.000 1 4 1 1.000 4 0 0
4 5 -1.000 -1 5 -1 -1.000 5 1 1
5 6 0.000 0 6 0 0.000 6 0 0
6 7 1.000 1 7 1 1.000 7 1 1
7 8 -1.000 -1 8 -1 -1.000 8 0 0
8 9 0.000 0 9 0 0.000 9 1 1
9 10 1.000 1 10 1 1.000 10 0 0
10 11 -1.000 -1 11 -1 -1.000 11 1 1
11 12 0.000 0 12 0 0.000 12 0 0
12 13 1.000 1 13 1 1.000 13 1 1
13 14 -1.000 -1 14 -1 -1.000 14 0 0
14 15 0.000 0 15 0 0.000 15 1 1
15 16 1.000 1 16 1 1.000 16 0 0
16 17 -1.000 -1 17 -1 -1.000 17 1 1
17 18 0.000 0 18 0 0.000 18 0 0
18 19 1.000 1 19 1 1.000 19 1 1
19 20 -1.000 -1 20 -1 -1.000 20 0 0
20 21 0.000 0 21 0 0.000 21 1 1


Decomposition to irreducible representations
Power
To
A1 A2 B1 B2 E1 E2 E3 E4 E5
1 0 0 0 0 0 0 0 1 0 E4
2 1 0 0 0 0 0 0 1 0 A1⊕E4
3 1 1 0 0 0 0 0 1 0 A1⊕A2⊕E4
4 1 0 0 0 0 0 0 2 0 A1⊕2E4
5 1 1 0 0 0 0 0 2 0 A1⊕A2⊕2E4
6 2 1 0 0 0 0 0 2 0 2A1⊕A2⊕2E4
7 1 1 0 0 0 0 0 3 0 A1⊕A2⊕3E4
8 2 1 0 0 0 0 0 3 0 2A1⊕A2⊕3E4
9 2 2 0 0 0 0 0 3 0 2A1⊕2A2⊕3E4
10 2 1 0 0 0 0 0 4 0 2A1⊕A2⊕4E4
11 2 2 0 0 0 0 0 4 0 2A1⊕2A2⊕4E4
12 3 2 0 0 0 0 0 4 0 3A1⊕2A2⊕4E4
13 2 2 0 0 0 0 0 5 0 2A1⊕2A2⊕5E4
14 3 2 0 0 0 0 0 5 0 3A1⊕2A2⊕5E4
15 3 3 0 0 0 0 0 5 0 3A1⊕3A2⊕5E4
16 3 2 0 0 0 0 0 6 0 3A1⊕2A2⊕6E4
17 3 3 0 0 0 0 0 6 0 3A1⊕3A2⊕6E4
18 4 3 0 0 0 0 0 6 0 4A1⊕3A2⊕6E4
19 3 3 0 0 0 0 0 7 0 3A1⊕3A2⊕7E4
20 4 3 0 0 0 0 0 7 0 4A1⊕3A2⊕7E4



Last update January, 3rd 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement