Results for Point Group D29d



Characters of symmetric power
Power
To
E 2C29 2(C29)2 2(C29)3 2(C29)4 2(C29)5 2(C29)6 2(C29)7 2(C29)8 2(C29)9 2(C29)10 2(C29)11 2(C29)12 2(C29)13 2(C29)14 29C'2 i 2(S58)27 2(S58)25 2(S58)23 2(S58)21 2(S58)19 2(S58)17 2(S58)15 2(S58)13 2(S58)11 2(S58)9 2(S58)7 2(S58)5 2(S58)3 2S58 29σd
1 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
2 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
3 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
4 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
5 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
6 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0


Decomposition to irreducible representations
Column for irrep highlighted
Power
To
A1g A2g E1g E2g E3g E4g E5g E6g E7g E8g E9g E10g E11g E12g E13g E14g A1u A2u E1u E2u E3u E4u E5u E6u E7u E8u E9u E10u E11u E12u E13u E14u
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Contributions to irrep A1g


pos(X) : Position of irreducible representation (irrep) X in character table of D29d

Subtotal: <Contributions to irrep A1g in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Contributions to irrep A1g> / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>


Contributions to irrep A1g for symmetric power to 2
Irrep combinations (i,i) with indices: pos(A1g) ≤ i ≤ pos(E14u)
Subtotal: 0 / 0 / 32
Irrep combinations (i,j) with indices: pos(A1g) ≤ i ≤ j ≤ pos(E14u)
Subtotal: 0 / 0 / 496
Total: 0 / 0 / 528


Contributions to irrep A1g for symmetric power to 3
Irrep combinations (i,i,i) with indices: pos(A1g) ≤ i ≤ pos(E14u)
Subtotal: 0 / 0 / 32
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A1g) ≤ i ≤ j ≤ pos(E14u)
Subtotal: 0 / 0 / 992
Irrep combinations (i,j,k) with indices: pos(A1g) ≤ i ≤ j ≤ k ≤ pos(E14u)
Subtotal: 0 / 0 / 4.960
Total: 0 / 0 / 5.984


Contributions to irrep A1g for symmetric power to 4
Irrep combinations (i,i,i,i) with indices: pos(A1g) ≤ i ≤ pos(E14u)
Subtotal: 0 / 0 / 32
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A1g) ≤ i ≤ j ≤ pos(E14u)
Subtotal: 0 / 0 / 992
Irrep combinations (i,i,j,j) with indices: pos(A1g) ≤ i ≤ j ≤ pos(E14u)
Subtotal: 0 / 0 / 496
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A1g) ≤ i ≤ j ≤ k ≤ pos(E14u)
Subtotal: 0 / 0 / 14.880
Irrep combinations (i,j,k,l) with indices: pos(A1g) ≤ i ≤ j ≤ k ≤ l ≤ pos(E14u)
Subtotal: 0 / 0 / 35.960
Total: 0 / 0 / 52.360


Calculate contributions to

A1g A2g E1g E2g E3g E4g E5g E6g E7g E8g E9g E10g E11g E12g E13g E14g A1u A2u E1u E2u E3u E4u E5u E6u E7u E8u E9u E10u E11u E12u E13u E14u
Show only nonzero contributions Show all contributions






Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement