Characters of symmetric power
Power To |
E |
2C11 |
2(C11)2 |
2(C11)3 |
2(C11)4 |
2(C11)5 |
11C'2 |
i |
2(S22)9 |
2(S22)7 |
2(S22)5 |
2(S22)3 |
2S22 |
11σd |
1 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
2 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
3 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
4 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
5 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
6 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
Decomposition to irreducible representations
Column for irrep highlighted
Power To |
A1g |
A2g |
E1g |
E2g |
E3g |
E4g |
E5g |
A1u |
A2u |
E1u |
E2u |
E3u |
E4u |
E5u |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
4 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
6 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Contributions to irrep
pos(X) : Position of irreducible representation (irrep) X in character table of D
11d
Subtotal: <Contributions to irrep in subsection>
/ <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Contributions to irrep >
/ <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>
Contributions to irrep
for symmetric power to 2
Irrep combinations (i,i) with indices: pos(A1g) ≤ i ≤ pos(E5u) |
Subtotal: 0 / 0 / 14 |
Irrep combinations (i,j) with indices: pos(A1g) ≤ i ≤ j ≤ pos(E5u) |
Subtotal: 0 / 0 / 91 |
Total: 0 / 0 / 105 |
Contributions to irrep
for symmetric power to 3
Irrep combinations (i,i,i) with indices: pos(A1g) ≤ i ≤ pos(E5u) |
Subtotal: 0 / 0 / 14 |
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A1g) ≤ i ≤ j ≤ pos(E5u) |
Subtotal: 0 / 0 / 182 |
Irrep combinations (i,j,k) with indices: pos(A1g) ≤ i ≤ j ≤ k ≤ pos(E5u) |
Subtotal: 0 / 0 / 364 |
Total: 0 / 0 / 560 |
Contributions to irrep
for symmetric power to 4
Irrep combinations (i,i,i,i) with indices: pos(A1g) ≤ i ≤ pos(E5u) |
Subtotal: 0 / 0 / 14 |
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A1g) ≤ i ≤ j ≤ pos(E5u) |
Subtotal: 0 / 0 / 182 |
Irrep combinations (i,i,j,j) with indices: pos(A1g) ≤ i ≤ j ≤ pos(E5u) |
Subtotal: 0 / 0 / 91 |
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A1g) ≤ i ≤ j ≤ k ≤ pos(E5u) |
Subtotal: 0 / 0 / 1.092 |
Irrep combinations (i,j,k,l) with indices: pos(A1g) ≤ i ≤ j ≤ k ≤ l ≤ pos(E5u) |
Subtotal: 0 / 0 / 1.001 |
Total: 0 / 0 / 2.380 |
Calculate contributions to
Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement