Results for Point Group D11d



Force field analysis


Allowed / forbidden vibronational transitions
Operator A1g A2g E1g E2g E3g E4g E5g A1u A2u E1u E2u E3u E4u E5u Total
Linear (IR) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 0
Quadratic (Raman) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 0
IR + Raman - - - - 0 - - - - - - - - 0 0 0 0 - - - - - - - - 0 0 0 0 0* / 0
* Parity Mutual Exclusion Principle


Characters of force fields
(Symmetric powers of vibration representation)
Force field E 2C11 2(C11)2 2(C11)3 2(C11)4 2(C11)5 11C'2 i 2(S22)9 2(S22)7 2(S22)5 2(S22)3 2S22 11σd
linear 0 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0
quadratic 0 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0
cubic 0 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0
quartic 0 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0
quintic 0 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0
sextic 0 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0


Decomposition to irreducible representations
Column with number of nonvanshing force constants highlighted
Force field A1g A2g E1g E2g E3g E4g E5g A1u A2u E1u E2u E3u E4u E5u
linear 0 0 0 0 0 0 0 0 0 0 0 0 0 0
quadratic 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cubic 0 0 0 0 0 0 0 0 0 0 0 0 0 0
quartic 0 0 0 0 0 0 0 0 0 0 0 0 0 0
quintic 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sextic 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Further Reading



Contributions to nonvanishing force field constants


pos(X) : Position of irreducible representation (irrep) X in character table of D11d

Subtotal: <Number of nonvanishing force constants in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Number of nonvanishing force constants in force field> / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>


Contributions to nonvanishing quadratic force field constants
Irrep combinations (i,i) with indices: pos(A1g) ≤ i ≤ pos(E5u)
Subtotal: 0 / 0 / 14
Irrep combinations (i,j) with indices: pos(A1g) ≤ i ≤ j ≤ pos(E5u)
Subtotal: 0 / 0 / 91
Total: 0 / 0 / 105


Contributions to nonvanishing cubic force field constants
Irrep combinations (i,i,i) with indices: pos(A1g) ≤ i ≤ pos(E5u)
Subtotal: 0 / 0 / 14
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A1g) ≤ i ≤ j ≤ pos(E5u)
Subtotal: 0 / 0 / 182
Irrep combinations (i,j,k) with indices: pos(A1g) ≤ i ≤ j ≤ k ≤ pos(E5u)
Subtotal: 0 / 0 / 364
Total: 0 / 0 / 560


Contributions to nonvanishing quartic force field constants
Irrep combinations (i,i,i,i) with indices: pos(A1g) ≤ i ≤ pos(E5u)
Subtotal: 0 / 0 / 14
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A1g) ≤ i ≤ j ≤ pos(E5u)
Subtotal: 0 / 0 / 182
Irrep combinations (i,i,j,j) with indices: pos(A1g) ≤ i ≤ j ≤ pos(E5u)
Subtotal: 0 / 0 / 91
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A1g) ≤ i ≤ j ≤ k ≤ pos(E5u)
Subtotal: 0 / 0 / 1.092
Irrep combinations (i,j,k,l) with indices: pos(A1g) ≤ i ≤ j ≤ k ≤ l ≤ pos(E5u)
Subtotal: 0 / 0 / 1.001
Total: 0 / 0 / 2.380


Calculate contributions to

A1g A2g E1g E2g E3g E4g E5g A1u A2u E1u E2u E3u E4u E5u
Show only nonzero contributions Show all contributions






Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement