Point Group D1d



D1d E C'2 i σd
A1g 1 1 1 1
A2g 1 -1 1 -1
A1u 1 1 -1 -1
A2u 1 -1 -1 1


Additional information

Number of symmetry elements h = 4
Number of classes, irreps n = 4
Abelian group yes
Optical Isomerism (Chirality) no
Polar no
Parity yes


Reduce representation to irreducible representations


E C'2 i σd



Genrate representation from irreducible representations


A1g A2g A1u A2u




Direct products of irreducible representations


Binary products
A1g A2g A1u A2u
A1g A1g
A2g A2gA1g
A1u A1uA2uA1g
A2u A2uA1uA2gA1g

Ternary Products
Quaternary Products



Spherical harmonics and Multipoles
Symmetric Powers of Γxyz


Spherical Harmonics Yl / Multipole Symmetric Power [Γl(xyz)]
l 2l+1 Multipole Symmetry Rank l(xyz)]
s (l=0) 1 Monopole A1g 1 A1g
p (l=1) 3 Dipole A2u 3 A2u
d (l=2) 5 Quadrupole 6 A1g
f (l=3) 7 Octupole 10 A2u
g (l=4) 9 Hexadecapole 15 A1g
h (l=5) 11 Dotricontapole 21 A2u
i (l=6) 13 Tetrahexacontapole 28 A1g
j (l=7) 15 Octacosahectapole 36 A2u
k (l=8) 17 256-pole 45 A1g
l (l=9) 19 512-pole 55 A2u
m (l=10) 21 1024-pole 66 A1g
n (l=11) 23 2048-pole 78 A2u
o (l=12) 25 4096-pole 91 A1g
More

First nonvanshing multipole: Monopole

Further Reading

  • A. Gelessus, W. Thiel, W. Weber. J. Chem. Educ. 72 505 (1995)
    Multipoles and symmetry




Ligand Field, dn term splitting


Term symbols for electronic configurations dn
dn Term Symbols
d1 = d9 2D
d2 = d8 1S, 1D, 1G, 3P, 3F
d3 = d7 2P, 2D (2), 2F, 2G, 2H, 4P, 4F
d4 = d6 1S (2), 1D (2), 1F, 1G (2), 1I, 3P (2), 3D, 3F (2), 3G, 3H, 5D
d5 2S, 2P, 2D (3), 2F (2), 2G (2), 2H, 2I, 4P, 4D, 4F, 4G, 6S


Term splitting in point group D1d
L 2L+1 Term Splitting
S (L=0) 1 A1g
P (L=1) 3
D (L=2) 5
F (L=3) 7
G (L=4) 9
H (L=5) 11
I (L=6) 13


Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement