Direct sum of irreducible representation
Ag |
Bg |
Au |
Bu |
15 |
0 |
0 |
15 |
Properties of derivatives and isotopomers by single substitution, h(C2h)=4
Atom Set* | Site Symmetry** | h(Site Symmetry) | Identical Atoms*** | Element | Chrial | Polar | Isotopomer |
---|
Isotope | Mass | Abundance**** |
---|
1 | Cs |
2 | 2 | C | no | yes | 13C | 229.0973 | 1.8195 |
2 | Cs |
2 | 2 | C | no | yes | 13C | 229.0973 | 1.8195 |
3 | Cs |
2 | 2 | C | no | yes | 13C | 229.0973 | 1.8195 |
4 | Cs |
2 | 2 | C | no | yes | 13C | 229.0973 | 1.8195 |
5 | Cs |
2 | 2 | C | no | yes | 13C | 229.0973 | 1.8195 |
6 | Cs |
2 | 2 | C | no | yes | 13C | 229.0973 | 1.8195 |
7 | Cs |
2 | 2 | C | no | yes | 13C | 229.0973 | 1.8195 |
8 | Cs |
2 | 2 | C | no | yes | 13C | 229.0973 | 1.8195 |
9 | Cs |
2 | 2 | C | no | yes | 13C | 229.0973 | 1.8195 |
10 | Cs |
2 | 2 | H | no | yes | 2H | 229.1002 | 0.025524 |
11 | Cs |
2 | 2 | H | no | yes | 2H | 229.1002 | 0.025524 |
12 | Cs |
2 | 2 | H | no | yes | 2H | 229.1002 | 0.025524 |
13 | Cs |
2 | 2 | H | no | yes | 2H | 229.1002 | 0.025524 |
14 | Cs |
2 | 2 | H | no | yes | 2H | 229.1002 | 0.025524 |
15 | Cs |
2 | 2 | H | no | yes | 2H | 229.1002 | 0.025524 |
Total Number of Atoms: | 30 | ✅ Correct Number of Atoms found |
*Atom Orbit
**Subgroup of point group C
2h
***Calculated as h( C
2h)/h(Site Symmetry)
****Natural Abundance of single substituted Isotopomer in %
Numbers of isomers by substitution
Replacement | Pattern | Achiral Isomers | Chiral Isomer Pairs |
Single | X | 15 | 0 |
Double | X2 | 225 | 0 |
Double | XY | 435 | 0 |
Triple | X3 | 2.030 | 0 |
Triple | X2Y | 6.090 | 0 |
Triple | XYZ | 12.180 | 0 |
Quadruple | X4 | 13.755 | 0 |
Quadruple | X3Y | 54.810 | 0 |
Quadruple | X2Y2 | 82.320 | 0 |
Quadruple | X2YZ | 164.430 | 0 |
Quadruple | WXYZ | 328.860 | 0 |
Quintuple | X5 | 71.253 | 0 |
Quintuple | VWXYZ | 8.550.360 | 0 |
Sextuple | X6 | 297.115 | 0 |
Sextuple | UVWXYZ | 213.759.000 | 0 |
Further Reading
- P.W. Fowler, J. Chem. Soc. Faraday Trans. 91(15) 2241 (1995)
Isomer Counting using Point Group Symmetry
Representation Γ3N
Characters of reducible representation
E |
C2 |
i |
σh |
90 |
0 |
0 |
30 |