Direct sum of irreducible representation
A1g |
B1g |
B2g |
B3g |
A1u |
B1u |
B2u |
B3u |
7 |
5 |
0 |
0 |
0 |
0 |
5 |
7 |
Properties of derivatives and isotopomers by single substitution, h(D2h)=8
Atom Set* | Site Symmetry** | h(Site Symmetry) | Identical Atoms*** | Element | Chrial | Polar | Isotopomer |
---|
Isotope | Mass | Abundance**** |
---|
1 | C2v |
4 | 2 | C | no | yes | 13C | 179.0816 | 1.9024 |
2 | C2v |
4 | 2 | H | no | yes | 2H | 179.0845 | 0.026687 |
3 | Cs |
2 | 4 | C | no | yes | 13C | 179.0816 | 3.8048 |
4 | Cs |
2 | 4 | C | no | yes | 13C | 179.0816 | 3.8048 |
5 | Cs |
2 | 4 | C | no | yes | 13C | 179.0816 | 3.8048 |
6 | Cs |
2 | 4 | H | no | yes | 2H | 179.0845 | 0.053373 |
7 | Cs |
2 | 4 | H | no | yes | 2H | 179.0845 | 0.053373 |
Total Number of Atoms: | 24 | ✅ Correct Number of Atoms found |
*Atom Orbit
**Subgroup of point group D
2h
***Calculated as h( D
2h)/h(Site Symmetry)
****Natural Abundance of single substituted Isotopomer in %
Numbers of isomers by substitution
Replacement | Pattern | Achiral Isomers | Chiral Isomer Pairs |
Single | X | 7 | 0 |
Double | X2 | 79 | 0 |
Double | XY | 141 | 0 |
Triple | X3 | 517 | 0 |
Triple | X2Y | 1.531 | 0 |
Triple | XYZ | 3.042 | 0 |
Quadruple | X4 | 2.716 | 0 |
Quadruple | X3Y | 10.657 | 0 |
Quadruple | X2Y2 | 16.059 | 0 |
Quadruple | X2YZ | 31.911 | 0 |
Quadruple | WXYZ | 63.762 | 0 |
Quintuple | X5 | 10.681 | 0 |
Quintuple | VWXYZ | 1.275.120 | 0 |
Sextuple | X6 | 33.859 | 0 |
Sextuple | UVWXYZ | 24.227.280 | 0 |
Further Reading
- P.W. Fowler, J. Chem. Soc. Faraday Trans. 91(15) 2241 (1995)
Isomer Counting using Point Group Symmetry
Representation Γ3N