Direct sum of irreducible representation
| A |
E*
|
T |
| 8 |
8 |
24 |
Properties of derivatives and isotopomers by single substitution, h(T)=12
| Atom Set* | Site Symmetry** | h(Site Symmetry) | Identical Atoms*** | Element | Chrial | Polar | Isotopomer |
|---|
| Isotope | Mass | Abundance**** |
|---|
| 1 | C1 |
1 | 12 | C | yes | yes | 13C | 1404.9459 | 6.8731 |
| 2 | C1 |
1 | 12 | C | yes | yes | 13C | 1404.9459 | 6.8731 |
| 3 | C1 |
1 | 12 | C | yes | yes | 13C | 1404.9459 | 6.8731 |
| 4 | C1 |
1 | 12 | C | yes | yes | 13C | 1404.9459 | 6.8731 |
| 5 | C1 |
1 | 12 | C | yes | yes | 13C | 1404.9459 | 6.8731 |
| 6 | C1 |
1 | 12 | F | yes | yes | - | - | - |
| 7 | C1 |
1 | 12 | F | yes | yes | - | - | - |
| 8 | C1 |
1 | 12 | F | yes | yes | - | - | - |
| Total Number of Atoms: | 96 | ✅ Correct Number of Atoms found |
*Atom Orbit
**Subgroup of point group T
***Calculated as h( T)/h(Site Symmetry)
****Natural Abundance of single substituted Isotopomer in %
Numbers of isomers by substitution
| Replacement | Pattern | Chiral Isomers |
| Single | X | 8 |
| Double | X2 | 392 |
| Double | XY | 760 |
| Triple | X3 | 11.928 |
| Triple | X2Y | 35.720 |
| Triple | XYZ | 71.440 |
| Quadruple | X4 | 277.112 |
| Quadruple | X3Y | 1.107.320 |
| Quadruple | X2Y2 | 1.661.544 |
| Quadruple | X2YZ | 3.321.960 |
| Quadruple | WXYZ | 6.643.920 |
| Quintuple | X5 | 5.093.672 |
| Quintuple | VWXYZ | 611.240.640 |
| Sextuple | X6 | 77.258.680 |
| Sextuple | UVWXYZ | 55.622.898.240 |
Further Reading
- P.W. Fowler, J. Chem. Soc. Faraday Trans. 91(15) 2241 (1995)
Isomer Counting using Point Group Symmetry
Representation Γ3N
Characters of reducible representation
| E |
4C3 |
4(C3)2 |
3C2 |
| 288 |
0 |
0 |
0 |