Direct sum of irreducible representation
| A1 |
A2 |
E |
| 7 |
2 |
6 |
Properties of derivatives and isotopomers by single substitution, h(C3v)=6
| Atom Set* | Site Symmetry** | h(Site Symmetry) | Identical Atoms*** | Element | Chrial | Polar | Isotopomer |
|---|
| Isotope | Mass | Abundance**** |
|---|
| 1 | C3v |
6 | 1 | C | no | yes | 13C | 112.1082 | 1.0235 |
| 2 | C3v |
6 | 1 | H | no | yes | 2H | 112.1111 | 0.014358 |
| 3 | C3v |
6 | 1 | N | no | yes | 15N | 112.1018 | 0.3380 |
| 4 | Cs |
2 | 3 | C | no | yes | 13C | 112.1082 | 3.0706 |
| 5 | Cs |
2 | 3 | C | no | yes | 13C | 112.1082 | 3.0706 |
| 6 | C1 |
1 | 6 | H | yes | yes | 2H | 112.1111 | 0.086148 |
| 7 | C1 |
1 | 6 | H | yes | yes | 2H | 112.1111 | 0.086148 |
| Total Number of Atoms: | 21 | ✅ Correct Number of Atoms found |
*Atom Orbit
**Subgroup of point group C
3v
***Calculated as h( C
3v)/h(Site Symmetry)
****Natural Abundance of single substituted Isotopomer in %
Numbers of isomers by substitution
| Replacement | Pattern | Achiral Isomers | Chiral Isomer Pairs |
| Single | X | 5 | 2 |
| Double | X2 | 18 | 27 |
| Double | XY | 20 | 62 |
| Triple | X3 | 50 | 199 |
| Triple | X2Y | 70 | 631 |
| Triple | XYZ | 60 | 1.302 |
| Quadruple | X4 | 113 | 947 |
| Quadruple | X3Y | 180 | 3.906 |
| Quadruple | X2Y2 | 246 | 5.862 |
| Quadruple | X2YZ | 220 | 11.860 |
| Quadruple | WXYZ | 120 | 23.880 |
| Quintuple | X5 | 221 | 3.287 |
| Quintuple | VWXYZ | 120 | 406.920 |
| Sextuple | X6 | 376 | 8.863 |
| Sextuple | UVWXYZ | 0 | 6.511.680 |
Further Reading
- P.W. Fowler, J. Chem. Soc. Faraday Trans. 91(15) 2241 (1995)
Isomer Counting using Point Group Symmetry
Representation Γ3N
Characters of reducible representation
| E |
2C3 |
3σv |
| 63 |
0 |
5 |