Direct sum of irreducible representation
Ag |
Bg |
Au |
Bu |
8 |
0 |
0 |
8 |
Properties of derivatives and isotopomers by single substitution, h(C2h)=4
Atom Set* | Site Symmetry** | h(Site Symmetry) | Identical Atoms*** | Element | Chrial | Polar | Isotopomer |
---|
Isotope | Mass | Abundance**** |
---|
1 | Cs |
2 | 2 | C | no | yes | 13C | 131.0565 | 2.0193 |
2 | Cs |
2 | 2 | N | no | yes | 15N | 131.0501 | 0.6669 |
3 | Cs |
2 | 2 | C | no | yes | 13C | 131.0565 | 2.0193 |
4 | Cs |
2 | 2 | C | no | yes | 13C | 131.0565 | 2.0193 |
5 | Cs |
2 | 2 | C | no | yes | 13C | 131.0565 | 2.0193 |
6 | Cs |
2 | 2 | H | no | yes | 2H | 131.0594 | 0.028327 |
7 | Cs |
2 | 2 | H | no | yes | 2H | 131.0594 | 0.028327 |
8 | Cs |
2 | 2 | H | no | yes | 2H | 131.0594 | 0.028327 |
Total Number of Atoms: | 16 | ✅ Correct Number of Atoms found |
*Atom Orbit
**Subgroup of point group C
2h
***Calculated as h( C
2h)/h(Site Symmetry)
****Natural Abundance of single substituted Isotopomer in %
Numbers of isomers by substitution
Replacement | Pattern | Achiral Isomers | Chiral Isomer Pairs |
Single | X | 8 | 0 |
Double | X2 | 64 | 0 |
Double | XY | 120 | 0 |
Triple | X3 | 280 | 0 |
Triple | X2Y | 840 | 0 |
Triple | XYZ | 1.680 | 0 |
Quadruple | X4 | 924 | 0 |
Quadruple | X3Y | 3.640 | 0 |
Quadruple | X2Y2 | 5.488 | 0 |
Quadruple | X2YZ | 10.920 | 0 |
Quadruple | WXYZ | 21.840 | 0 |
Quintuple | X5 | 2.184 | 0 |
Quintuple | VWXYZ | 262.080 | 0 |
Sextuple | X6 | 4.032 | 0 |
Sextuple | UVWXYZ | 2.882.880 | 0 |
Further Reading
- P.W. Fowler, J. Chem. Soc. Faraday Trans. 91(15) 2241 (1995)
Isomer Counting using Point Group Symmetry
Representation Γ3N
Characters of reducible representation
E |
C2 |
i |
σh |
48 |
0 |
0 |
16 |