Direct sum of irreducible representation
| A |
B |
| 8 |
7 |
Properties of derivatives and isotopomers by single substitution, h(C2)=2
| Atom Set* | Site Symmetry** | h(Site Symmetry) | Identical Atoms*** | Element | Chrial | Polar | Isotopomer |
|---|
| Isotope | Mass | Abundance**** |
|---|
| 1 | C2 |
2 | 1 | C | yes | yes | 13C | 71.0816 | 1.0508 |
| 2 | C1 |
1 | 2 | C | yes | yes | 13C | 71.0816 | 2.1015 |
| 3 | C1 |
1 | 2 | C | yes | yes | 13C | 71.0816 | 2.1015 |
| 4 | C1 |
1 | 2 | H | yes | yes | 2H | 71.0845 | 0.029480 |
| 5 | C1 |
1 | 2 | H | yes | yes | 2H | 71.0845 | 0.029480 |
| 6 | C1 |
1 | 2 | H | yes | yes | 2H | 71.0845 | 0.029480 |
| 7 | C1 |
1 | 2 | H | yes | yes | 2H | 71.0845 | 0.029480 |
| 8 | C1 |
1 | 2 | H | yes | yes | 2H | 71.0845 | 0.029480 |
| Total Number of Atoms: | 15 | ✅ Correct Number of Atoms found |
*Atom Orbit
**Subgroup of point group C
2
***Calculated as h( C
2)/h(Site Symmetry)
****Natural Abundance of single substituted Isotopomer in %
Numbers of isomers by substitution
| Replacement | Pattern | Chiral Isomers |
| Single | X | 8 |
| Double | X2 | 56 |
| Double | XY | 105 |
| Triple | X3 | 231 |
| Triple | X2Y | 686 |
| Triple | XYZ | 1.365 |
| Quadruple | X4 | 693 |
| Quadruple | X3Y | 2.730 |
| Quadruple | X2Y2 | 4.116 |
| Quadruple | X2YZ | 8.190 |
| Quadruple | WXYZ | 16.380 |
| Quintuple | X5 | 1.512 |
| Quintuple | VWXYZ | 180.180 |
| Sextuple | X6 | 2.520 |
| Sextuple | UVWXYZ | 1.801.800 |
Further Reading
- P.W. Fowler, J. Chem. Soc. Faraday Trans. 91(15) 2241 (1995)
Isomer Counting using Point Group Symmetry
Representation Γ3N
Characters of reducible representation
| E |
C2 |
| 45 |
-1 |