Direct sum of irreducible representation
A1 |
A2 |
B1 |
B2 |
E |
3 |
0 |
0 |
3 |
3 |
Properties of derivatives and isotopomers by single substitution, h(D2d)=8
Atom Set* | Site Symmetry** | h(Site Symmetry) | Identical Atoms*** | Element | Chrial | Polar | Isotopomer |
---|
Isotope | Mass | Abundance**** |
---|
1 | Cs |
2 | 4 | C | no | yes | 13C | 57.0660 | 4.2511 |
2 | Cs |
2 | 4 | H | no | yes | 2H | 57.0689 | 0.059634 |
3 | Cs |
2 | 4 | H | no | yes | 2H | 57.0689 | 0.059634 |
Total Number of Atoms: | 12 | ✅ Correct Number of Atoms found |
*Atom Orbit
**Subgroup of point group D
2d
***Calculated as h( D
2d)/h(Site Symmetry)
****Natural Abundance of single substituted Isotopomer in %
Numbers of isomers by substitution
Replacement | Pattern | Achiral Isomers | Chiral Isomer Pairs |
Single | X | 3 | 0 |
Double | X2 | 9 | 6 |
Double | XY | 15 | 9 |
Triple | X3 | 19 | 18 |
Triple | X2Y | 39 | 63 |
Triple | XYZ | 60 | 135 |
Quadruple | X4 | 33 | 51 |
Quadruple | X3Y | 75 | 210 |
Quadruple | X2Y2 | 93 | 336 |
Quadruple | X2YZ | 135 | 675 |
Quadruple | WXYZ | 180 | 1.395 |
Quintuple | X5 | 42 | 78 |
Quintuple | VWXYZ | 360 | 11.700 |
Sextuple | X6 | 46 | 100 |
Sextuple | UVWXYZ | 360 | 82.980 |
Further Reading
- P.W. Fowler, J. Chem. Soc. Faraday Trans. 91(15) 2241 (1995)
Isomer Counting using Point Group Symmetry
Representation Γ3N
Characters of reducible representation
E |
2S4 |
C2 |
2C'2 |
2σd |
36 |
0 |
0 |
0 |
6 |