Grouptheoretical Analysis




Composition Input Structure


Atomic
Number
Atomic
Symbol
Isotope Isotope
Mass
Isotope
Abundance
Number
Atoms
Mass
1H11.007899.984422.0157
6C1212.000098.9000112.0000
7N1414.003199.6340228.0061
Total5 42.0218
Isotopomer Natural Abundance (%)98.1467


Determined Point Group: C2v








Representation ΓN


Characters of reducible representation
E C2.(z) σv.(xz) σd.(yz)
5 3 5 3

Direct sum of irreducible representation
A1 A2 B1 B2
4 0 1 0



Properties of derivatives and isotopomers by single substitution, h(C2v)=4
Atom Set*Site Symmetry**h(Site Symmetry)Identical Atoms***ElementChrialPolarIsotopomer
IsotopeMassAbundance****
1 Cs 22Hnoyes2H43.02810.030627
2 C2v 41Cnoyes13C43.02521.0916
3 C2v 41Nnoyes15N43.01880.3605
4 C2v 41Nnoyes15N43.01880.3605
Total Number of Atoms:5✅ Correct Number of Atoms found
*Atom Orbit
**Subgroup of point group C2v
***Calculated as h( C2v)/h(Site Symmetry)
****Natural Abundance of single substituted Isotopomer in %


Numbers of isomers by substitution
ReplacementPatternAchiral
Isomers
Chiral
Isomer Pairs
SingleX40
DoubleX270
DoubleXY130
TripleX370
TripleX2Y180
TripleXYZ330
QuadrupleX440
QuadrupleX3Y130
QuadrupleX2Y2180
QuadrupleX2YZ330
QuadrupleWXYZ600
QuintupleX510
QuintupleVWXYZ600
SextupleX600
SextupleUVWXYZ00

Further Reading

  • P.W. Fowler, J. Chem. Soc. Faraday Trans. 91(15) 2241 (1995)
    Isomer Counting using Point Group Symmetry




Representation Γ3N


Characters of reducible representation
E C2.(z) σv.(xz) σd.(yz)
15 -3 5 3

Direct sum of irreducible representation
A1 A2 B1 B2
5 1 5 4

Molecular motions and force field analysis



Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement