Reduction formula for point group D2h

Your representation

E C2 (z) C2 (y) C2 (x) i (xy) (xz) (yz)
180 0 0 0 0 4 4 4

can be reduced to

Ag B1g B2g B3g Au B1u B2u B3u
24 22 22 22 21 23 23 23

Substraction of translational and rotational contributions results in

Ag B1g B2g B3g Au B1u B2u B3u
24 21 21 21 21 22 22 22



Force field analysis

Infrared and Raman activities (harmonic approximation)
Method Ag B1g B2g B3g Au B1u B2u B3u
Infrared - - - - - + + +
Raman + + + + - - - -

Number of force field parameters
Force field No. 1 No. 2 No. 3
linear 174 174 24
quadratic 30276 15225 1983
cubic 5268024 893200 111851
quartic 916636176 39524100 4944195
No. 1 : Total number of force constants .
No. 2 : Total number of force constants k.
No. 3 : Total number of nonvanishing force constants k.

Symmetry properties of force field parameters
Force field Ag B1g B2g B3g Au B1u B2u B3u
linear 24 21 21 21 21 22 22 22
quadratic 1983 1891 1891 1891 1890 1893 1893 1893
cubic 111851 111583 111583 111583 111581 111673 111673 111673
quartic 4944195 4939923 4939923 4939923 4939833 4940101 4940101 4940101

Number of independant internal coordinates 24

Literature




Character tables for chemically important point groups Character table for point group D2h Jacobs University Bremen