Reduction formula for point group D2h

Your representation

E C2 (z) C2 (y) C2 (x) i (xy) (xz) (yz)
120 0 0 0 0 8 8 8

can be reduced to

Ag B1g B2g B3g Au B1u B2u B3u
18 14 14 14 12 16 16 16

Substraction of translational and rotational contributions results in

Ag B1g B2g B3g Au B1u B2u B3u
18 13 13 13 12 15 15 15



Force field analysis

Infrared and Raman activities (harmonic approximation)
Method Ag B1g B2g B3g Au B1u B2u B3u
Infrared - - - - - + + +
Raman + + + + - - - -

Number of force field parameters
Force field No. 1 No. 2 No. 3
linear 114 114 18
quadratic 12996 6555 882
cubic 1481544 253460 31930
quartic 168896016 7413705 928959
No. 1 : Total number of force constants .
No. 2 : Total number of force constants k.
No. 3 : Total number of nonvanishing force constants k.

Symmetry properties of force field parameters
Force field Ag B1g B2g B3g Au B1u B2u B3u
linear 18 13 13 13 12 15 15 15
quadratic 882 808 808 808 801 816 816 816
cubic 31930 31600 31600 31600 31522 31736 31736 31736
quartic 928959 926240 926240 926240 925794 926744 926744 926744

Number of independant internal coordinates 18

Literature




Character tables for chemically important point groups Character table for point group D2h Jacobs University Bremen