Note on E representations in
C19h character table



36 irreducible representations of point group C19h have complex values. 18 two-dimensional real-valued representations E can be constructed as direct sum of the 18 pairs complex plus conjugate complex irreducible representation.

E'1 = E'1a ⊕ E'1b
E'2 = E'2a ⊕ E'2b
E'3 = E'3a ⊕ E'3b
E'4 = E'4a ⊕ E'4b
E'5 = E'5a ⊕ E'5b
E'6 = E'6a ⊕ E'6b
E'7 = E'7a ⊕ E'7b
E'8 = E'8a ⊕ E'8b
E'9 = E'9a ⊕ E'9b
E''1 = E''1a ⊕ E''1b
E''2 = E''2a ⊕ E''2b
E''3 = E''3a ⊕ E''3b
E''4 = E''4a ⊕ E''4b
E''5 = E''5a ⊕ E''5b
E''6 = E''6a ⊕ E''6b
E''7 = E''7a ⊕ E''7b
E''8 = E''8a ⊕ E''8b
E''9 = E''9a ⊕ E''9b


ε=exp(2πi/19)
C19h E C19 (C19)2 (C19)3 (C19)4 (C19)5 (C19)6 (C19)7 (C19)8 (C19)9 (C19)10 (C19)11 (C19)12 (C19)13 (C19)14 (C19)15 (C19)16 (C19)17 (C19)18 σh S19 (S19)21 (S19)3 (S19)23 (S19)5 (S19)25 (S19)7 (S19)27 (S19)9 (S19)29 (S19)11 (S19)31 (S19)13 (S19)33 (S19)15 (S19)35 (S19)17 (S19)37
A' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E'1 E'1a
E'1b
1
1
ε*
ε*
ε2*
ε2*
ε3*
ε3*
ε4*
ε4*
ε5*
ε5*
ε6*
ε6*
ε7*
ε7*
ε8*
ε8*
ε9*
ε9*
ε9*
ε9*
ε8*
ε8*
ε7*
ε7*
ε6*
ε6*
ε5*
ε5*
ε4*
ε4*
ε3*
ε3*
ε2*
ε2*
ε*
ε*
1
1
ε*
ε*
ε2*
ε2*
ε3*
ε3*
ε4*
ε4*
ε5*
ε5*
ε6*
ε6*
ε7*
ε7*
ε8*
ε8*
ε9*
ε9*
ε9*
ε9*
ε8*
ε8*
ε7*
ε7*
ε6*
ε6*
ε5*
ε5*
ε4*
ε4*
ε3*
ε3*
ε2*
ε2*
ε*
ε*
E'2 E'2a
E'2b
1
1
ε2*
ε2*
ε4*
ε4*
ε6*
ε6*
ε8*
ε8*
ε9*
ε9*
ε7*
ε7*
ε5*
ε5*
ε3*
ε3*
ε*
ε*
ε*
ε*
ε3*
ε3*
ε5*
ε5*
ε7*
ε7*
ε9*
ε9*
ε8*
ε8*
ε6*
ε6*
ε4*
ε4*
ε2*
ε2*
1
1
ε2*
ε2*
ε4*
ε4*
ε6*
ε6*
ε8*
ε8*
ε9*
ε9*
ε7*
ε7*
ε5*
ε5*
ε3*
ε3*
ε*
ε*
ε*
ε*
ε3*
ε3*
ε5*
ε5*
ε7*
ε7*
ε9*
ε9*
ε8*
ε8*
ε6*
ε6*
ε4*
ε4*
ε2*
ε2*
E'3 E'3a
E'3b
1
1
ε3*
ε3*
ε6*
ε6*
ε9*
ε9*
ε7*
ε7*
ε4*
ε4*
ε*
ε*
ε2*
ε2*
ε5*
ε5*
ε8*
ε8*
ε8*
ε8*
ε5*
ε5*
ε2*
ε2*
ε*
ε*
ε4*
ε4*
ε7*
ε7*
ε9*
ε9*
ε6*
ε6*
ε3*
ε3*
1
1
ε3*
ε3*
ε6*
ε6*
ε9*
ε9*
ε7*
ε7*
ε4*
ε4*
ε*
ε*
ε2*
ε2*
ε5*
ε5*
ε8*
ε8*
ε8*
ε8*
ε5*
ε5*
ε2*
ε2*
ε*
ε*
ε4*
ε4*
ε7*
ε7*
ε9*
ε9*
ε6*
ε6*
ε3*
ε3*
E'4 E'4a
E'4b
1
1
ε4*
ε4*
ε8*
ε8*
ε7*
ε7*
ε3*
ε3*
ε*
ε*
ε5*
ε5*
ε9*
ε9*
ε6*
ε6*
ε2*
ε2*
ε2*
ε2*
ε6*
ε6*
ε9*
ε9*
ε5*
ε5*
ε*
ε*
ε3*
ε3*
ε7*
ε7*
ε8*
ε8*
ε4*
ε4*
1
1
ε4*
ε4*
ε8*
ε8*
ε7*
ε7*
ε3*
ε3*
ε*
ε*
ε5*
ε5*
ε9*
ε9*
ε6*
ε6*
ε2*
ε2*
ε2*
ε2*
ε6*
ε6*
ε9*
ε9*
ε5*
ε5*
ε*
ε*
ε3*
ε3*
ε7*
ε7*
ε8*
ε8*
ε4*
ε4*
E'5 E'5a
E'5b
1
1
ε5*
ε5*
ε9*
ε9*
ε4*
ε4*
ε*
ε*
ε6*
ε6*
ε8*
ε8*
ε3*
ε3*
ε2*
ε2*
ε7*
ε7*
ε7*
ε7*
ε2*
ε2*
ε3*
ε3*
ε8*
ε8*
ε6*
ε6*
ε*
ε*
ε4*
ε4*
ε9*
ε9*
ε5*
ε5*
1
1
ε5*
ε5*
ε9*
ε9*
ε4*
ε4*
ε*
ε*
ε6*
ε6*
ε8*
ε8*
ε3*
ε3*
ε2*
ε2*
ε7*
ε7*
ε7*
ε7*
ε2*
ε2*
ε3*
ε3*
ε8*
ε8*
ε6*
ε6*
ε*
ε*
ε4*
ε4*
ε9*
ε9*
ε5*
ε5*
E'6 E'6a
E'6b
1
1
ε6*
ε6*
ε7*
ε7*
ε*
ε*
ε5*
ε5*
ε8*
ε8*
ε2*
ε2*
ε4*
ε4*
ε9*
ε9*
ε3*
ε3*
ε3*
ε3*
ε9*
ε9*
ε4*
ε4*
ε2*
ε2*
ε8*
ε8*
ε5*
ε5*
ε*
ε*
ε7*
ε7*
ε6*
ε6*
1
1
ε6*
ε6*
ε7*
ε7*
ε*
ε*
ε5*
ε5*
ε8*
ε8*
ε2*
ε2*
ε4*
ε4*
ε9*
ε9*
ε3*
ε3*
ε3*
ε3*
ε9*
ε9*
ε4*
ε4*
ε2*
ε2*
ε8*
ε8*
ε5*
ε5*
ε*
ε*
ε7*
ε7*
ε6*
ε6*
E'7 E'7a
E'7b
1
1
ε7*
ε7*
ε5*
ε5*
ε2*
ε2*
ε9*
ε9*
ε3*
ε3*
ε4*
ε4*
ε8*
ε8*
ε*
ε*
ε6*
ε6*
ε6*
ε6*
ε*
ε*
ε8*
ε8*
ε4*
ε4*
ε3*
ε3*
ε9*
ε9*
ε2*
ε2*
ε5*
ε5*
ε7*
ε7*
1
1
ε7*
ε7*
ε5*
ε5*
ε2*
ε2*
ε9*
ε9*
ε3*
ε3*
ε4*
ε4*
ε8*
ε8*
ε*
ε*
ε6*
ε6*
ε6*
ε6*
ε*
ε*
ε8*
ε8*
ε4*
ε4*
ε3*
ε3*
ε9*
ε9*
ε2*
ε2*
ε5*
ε5*
ε7*
ε7*
E'8 E'8a
E'8b
1
1
ε8*
ε8*
ε3*
ε3*
ε5*
ε5*
ε6*
ε6*
ε2*
ε2*
ε9*
ε9*
ε*
ε*
ε7*
ε7*
ε4*
ε4*
ε4*
ε4*
ε7*
ε7*
ε*
ε*
ε9*
ε9*
ε2*
ε2*
ε6*
ε6*
ε5*
ε5*
ε3*
ε3*
ε8*
ε8*
1
1
ε8*
ε8*
ε3*
ε3*
ε5*
ε5*
ε6*
ε6*
ε2*
ε2*
ε9*
ε9*
ε*
ε*
ε7*
ε7*
ε4*
ε4*
ε4*
ε4*
ε7*
ε7*
ε*
ε*
ε9*
ε9*
ε2*
ε2*
ε6*
ε6*
ε5*
ε5*
ε3*
ε3*
ε8*
ε8*
E'9 E'9a
E'9b
1
1
ε9*
ε9*
ε*
ε*
ε8*
ε8*
ε2*
ε2*
ε7*
ε7*
ε3*
ε3*
ε6*
ε6*
ε4*
ε4*
ε5*
ε5*
ε5*
ε5*
ε4*
ε4*
ε6*
ε6*
ε3*
ε3*
ε7*
ε7*
ε2*
ε2*
ε8*
ε8*
ε*
ε*
ε9*
ε9*
1
1
ε9*
ε9*
ε*
ε*
ε8*
ε8*
ε2*
ε2*
ε7*
ε7*
ε3*
ε3*
ε6*
ε6*
ε4*
ε4*
ε5*
ε5*
ε5*
ε5*
ε4*
ε4*
ε6*
ε6*
ε3*
ε3*
ε7*
ε7*
ε2*
ε2*
ε8*
ε8*
ε*
ε*
ε9*
ε9*
A'' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
E''1 E''1a
E''1b
1
1
ε*
ε*
ε2*
ε2*
ε3*
ε3*
ε4*
ε4*
ε5*
ε5*
ε6*
ε6*
ε7*
ε7*
ε8*
ε8*
ε9*
ε9*
ε9*
ε9*
ε8*
ε8*
ε7*
ε7*
ε6*
ε6*
ε5*
ε5*
ε4*
ε4*
ε3*
ε3*
ε2*
ε2*
ε*
ε*
-1
-1
*
*
2*
2*
3*
3*
4*
4*
5*
5*
6*
6*
7*
7*
8*
8*
9*
9*
9*
9*
8*
8*
7*
7*
6*
6*
5*
5*
4*
4*
3*
3*
2*
2*
*
*
E''2 E''2a
E''2b
1
1
ε2*
ε2*
ε4*
ε4*
ε6*
ε6*
ε8*
ε8*
ε9*
ε9*
ε7*
ε7*
ε5*
ε5*
ε3*
ε3*
ε*
ε*
ε*
ε*
ε3*
ε3*
ε5*
ε5*
ε7*
ε7*
ε9*
ε9*
ε8*
ε8*
ε6*
ε6*
ε4*
ε4*
ε2*
ε2*
-1
-1
2*
2*
4*
4*
6*
6*
8*
8*
9*
9*
7*
7*
5*
5*
3*
3*
*
*
*
*
3*
3*
5*
5*
7*
7*
9*
9*
8*
8*
6*
6*
4*
4*
2*
2*
E''3 E''3a
E''3b
1
1
ε3*
ε3*
ε6*
ε6*
ε9*
ε9*
ε7*
ε7*
ε4*
ε4*
ε*
ε*
ε2*
ε2*
ε5*
ε5*
ε8*
ε8*
ε8*
ε8*
ε5*
ε5*
ε2*
ε2*
ε*
ε*
ε4*
ε4*
ε7*
ε7*
ε9*
ε9*
ε6*
ε6*
ε3*
ε3*
-1
-1
3*
3*
6*
6*
9*
9*
7*
7*
4*
4*
*
*
2*
2*
5*
5*
8*
8*
8*
8*
5*
5*
2*
2*
*
*
4*
4*
7*
7*
9*
9*
6*
6*
3*
3*
E''4 E''4a
E''4b
1
1
ε4*
ε4*
ε8*
ε8*
ε7*
ε7*
ε3*
ε3*
ε*
ε*
ε5*
ε5*
ε9*
ε9*
ε6*
ε6*
ε2*
ε2*
ε2*
ε2*
ε6*
ε6*
ε9*
ε9*
ε5*
ε5*
ε*
ε*
ε3*
ε3*
ε7*
ε7*
ε8*
ε8*
ε4*
ε4*
-1
-1
4*
4*
8*
8*
7*
7*
3*
3*
*
*
5*
5*
9*
9*
6*
6*
2*
2*
2*
2*
6*
6*
9*
9*
5*
5*
*
*
3*
3*
7*
7*
8*
8*
4*
4*
E''5 E''5a
E''5b
1
1
ε5*
ε5*
ε9*
ε9*
ε4*
ε4*
ε*
ε*
ε6*
ε6*
ε8*
ε8*
ε3*
ε3*
ε2*
ε2*
ε7*
ε7*
ε7*
ε7*
ε2*
ε2*
ε3*
ε3*
ε8*
ε8*
ε6*
ε6*
ε*
ε*
ε4*
ε4*
ε9*
ε9*
ε5*
ε5*
-1
-1
5*
5*
9*
9*
4*
4*
*
*
6*
6*
8*
8*
3*
3*
2*
2*
7*
7*
7*
7*
2*
2*
3*
3*
8*
8*
6*
6*
*
*
4*
4*
9*
9*
5*
5*
E''6 E''6a
E''6b
1
1
ε6*
ε6*
ε7*
ε7*
ε*
ε*
ε5*
ε5*
ε8*
ε8*
ε2*
ε2*
ε4*
ε4*
ε9*
ε9*
ε3*
ε3*
ε3*
ε3*
ε9*
ε9*
ε4*
ε4*
ε2*
ε2*
ε8*
ε8*
ε5*
ε5*
ε*
ε*
ε7*
ε7*
ε6*
ε6*
-1
-1
6*
6*
7*
7*
*
*
5*
5*
8*
8*
2*
2*
4*
4*
9*
9*
3*
3*
3*
3*
9*
9*
4*
4*
2*
2*
8*
8*
5*
5*
*
*
7*
7*
6*
6*
E''7 E''7a
E''7b
1
1
ε7*
ε7*
ε5*
ε5*
ε2*
ε2*
ε9*
ε9*
ε3*
ε3*
ε4*
ε4*
ε8*
ε8*
ε*
ε*
ε6*
ε6*
ε6*
ε6*
ε*
ε*
ε8*
ε8*
ε4*
ε4*
ε3*
ε3*
ε9*
ε9*
ε2*
ε2*
ε5*
ε5*
ε7*
ε7*
-1
-1
7*
7*
5*
5*
2*
2*
9*
9*
3*
3*
4*
4*
8*
8*
*
*
6*
6*
6*
6*
*
*
8*
8*
4*
4*
3*
3*
9*
9*
2*
2*
5*
5*
7*
7*
E''8 E''8a
E''8b
1
1
ε8*
ε8*
ε3*
ε3*
ε5*
ε5*
ε6*
ε6*
ε2*
ε2*
ε9*
ε9*
ε*
ε*
ε7*
ε7*
ε4*
ε4*
ε4*
ε4*
ε7*
ε7*
ε*
ε*
ε9*
ε9*
ε2*
ε2*
ε6*
ε6*
ε5*
ε5*
ε3*
ε3*
ε8*
ε8*
-1
-1
8*
8*
3*
3*
5*
5*
6*
6*
2*
2*
9*
9*
*
*
7*
7*
4*
4*
4*
4*
7*
7*
*
*
9*
9*
2*
2*
6*
6*
5*
5*
3*
3*
8*
8*
E''9 E''9a
E''9b
1
1
ε9*
ε9*
ε*
ε*
ε8*
ε8*
ε2*
ε2*
ε7*
ε7*
ε3*
ε3*
ε6*
ε6*
ε4*
ε4*
ε5*
ε5*
ε5*
ε5*
ε4*
ε4*
ε6*
ε6*
ε3*
ε3*
ε7*
ε7*
ε2*
ε2*
ε8*
ε8*
ε*
ε*
ε9*
ε9*
-1
-1
9*
9*
*
*
8*
8*
2*
2*
7*
7*
3*
3*
6*
6*
4*
4*
5*
5*
5*
5*
4*
4*
6*
6*
3*
3*
7*
7*
2*
2*
8*
8*
*
*
9*
9*


Obviously the E representations are reducible. Nevertheless the E representations are treated often as irreducible representations and are called real-valued or pseudo irreducible representations. One should keep in mind that general statements for character tables fail for real-valued representations. For example:



Last update August, 12th 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement