Results for Point Group C14h



Symmetric powers of degenerate representation E6u
Vibrational overtones


Characters of symmetric powers
Power
To
E C14 C7 (C14)3 (C7)2 (C14)5 (C7)3 C2 (C7)4 (C14)9 (C7)5 (C14)11 (C7)6 (C14)13 i (S7)11 (S14)9 (S7)5 (S14)11 (S7)13 (S14)13 σh S14 S7 (S14)3 (S7)9 (S14)5 (S7)3
1 2 -1.802 1.247 -0.445 -0.445 1.247 -1.802 2 -1.802 1.247 -0.445 -0.445 1.247 -1.802 -2 1.802 -1.247 0.445 0.445 -1.247 1.802 -2 1.802 -1.247 0.445 0.445 -1.247 1.802
2 3 2.247 0.555 -0.802 -0.802 0.555 2.247 3 2.247 0.555 -0.802 -0.802 0.555 2.247 3 2.247 0.555 -0.802 -0.802 0.555 2.247 3 2.247 0.555 -0.802 -0.802 0.555 2.247
3 4 -2.247 -0.555 0.802 0.802 -0.555 -2.247 4 -2.247 -0.555 0.802 0.802 -0.555 -2.247 -4 2.247 0.555 -0.802 -0.802 0.555 2.247 -4 2.247 0.555 -0.802 -0.802 0.555 2.247
4 5 1.802 -1.247 0.445 0.445 -1.247 1.802 5 1.802 -1.247 0.445 0.445 -1.247 1.802 5 1.802 -1.247 0.445 0.445 -1.247 1.802 5 1.802 -1.247 0.445 0.445 -1.247 1.802
5 6 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 6 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -6 1.000 1.000 1.000 1.000 1.000 1.000 -6 1.000 1.000 1.000 1.000 1.000 1.000
6 7 -0.000 0.000 -0.000 0.000 -0.000 0.000 7 -0.000 0.000 -0.000 0.000 -0.000 0.000 7 -0.000 0.000 -0.000 0.000 -0.000 0.000 7 -0.000 0.000 -0.000 0.000 -0.000 0.000
7 8 1.000 1.000 1.000 1.000 1.000 1.000 8 1.000 1.000 1.000 1.000 1.000 1.000 -8 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -8 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
8 9 -1.802 1.247 -0.445 -0.445 1.247 -1.802 9 -1.802 1.247 -0.445 -0.445 1.247 -1.802 9 -1.802 1.247 -0.445 -0.445 1.247 -1.802 9 -1.802 1.247 -0.445 -0.445 1.247 -1.802
9 10 2.247 0.555 -0.802 -0.802 0.555 2.247 10 2.247 0.555 -0.802 -0.802 0.555 2.247 -10 -2.247 -0.555 0.802 0.802 -0.555 -2.247 -10 -2.247 -0.555 0.802 0.802 -0.555 -2.247
10 11 -2.247 -0.555 0.802 0.802 -0.555 -2.247 11 -2.247 -0.555 0.802 0.802 -0.555 -2.247 11 -2.247 -0.555 0.802 0.802 -0.555 -2.247 11 -2.247 -0.555 0.802 0.802 -0.555 -2.247
11 12 1.802 -1.247 0.445 0.445 -1.247 1.802 12 1.802 -1.247 0.445 0.445 -1.247 1.802 -12 -1.802 1.247 -0.445 -0.445 1.247 -1.802 -12 -1.802 1.247 -0.445 -0.445 1.247 -1.802
12 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
13 14 -0.000 0.000 -0.000 0.000 -0.000 0.000 14 -0.000 0.000 -0.000 0.000 -0.000 0.000 -14 0.000 -0.000 0.000 -0.000 0.000 -0.000 -14 0.000 -0.000 0.000 -0.000 0.000 -0.000
14 15 1.000 1.000 1.000 1.000 1.000 1.000 15 1.000 1.000 1.000 1.000 1.000 1.000 15 1.000 1.000 1.000 1.000 1.000 1.000 15 1.000 1.000 1.000 1.000 1.000 1.000
15 16 -1.802 1.247 -0.445 -0.445 1.247 -1.802 16 -1.802 1.247 -0.445 -0.445 1.247 -1.802 -16 1.802 -1.247 0.445 0.445 -1.247 1.802 -16 1.802 -1.247 0.445 0.445 -1.247 1.802
16 17 2.247 0.555 -0.802 -0.802 0.555 2.247 17 2.247 0.555 -0.802 -0.802 0.555 2.247 17 2.247 0.555 -0.802 -0.802 0.555 2.247 17 2.247 0.555 -0.802 -0.802 0.555 2.247
17 18 -2.247 -0.555 0.802 0.802 -0.555 -2.247 18 -2.247 -0.555 0.802 0.802 -0.555 -2.247 -18 2.247 0.555 -0.802 -0.802 0.555 2.247 -18 2.247 0.555 -0.802 -0.802 0.555 2.247
18 19 1.802 -1.247 0.445 0.445 -1.247 1.802 19 1.802 -1.247 0.445 0.445 -1.247 1.802 19 1.802 -1.247 0.445 0.445 -1.247 1.802 19 1.802 -1.247 0.445 0.445 -1.247 1.802
19 20 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 20 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -20 1.000 1.000 1.000 1.000 1.000 1.000 -20 1.000 1.000 1.000 1.000 1.000 1.000
20 21 -0.000 0.000 -0.000 0.000 -0.000 0.000 21 -0.000 0.000 -0.000 0.000 -0.000 0.000 21 -0.000 0.000 -0.000 0.000 -0.000 0.000 21 -0.000 0.000 -0.000 0.000 -0.000 0.000


Decomposition to irreducible representations
Power
To
Ag Bg E1g* E2g* E3g* E4g* E5g* E6g* Au Bu E1u* E2u* E3u* E4u* E5u* E6u*
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 E6u
2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Ag⊕E2g
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 E4u⊕E6u
4 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 Ag⊕E2g⊕E4g
5 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 E2u⊕E4u⊕E6u
6 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 Ag⊕E2g⊕E4g⊕E6g
7 0 0 0 0 0 0 0 0 2 0 0 1 0 1 0 1 2Au⊕E2u⊕E4u⊕E6u
8 1 0 0 1 0 1 0 2 0 0 0 0 0 0 0 0 Ag⊕E2g⊕E4g⊕2E6g
9 0 0 0 0 0 0 0 0 2 0 0 2 0 1 0 1 2Au⊕2E2u⊕E4u⊕E6u
10 1 0 0 1 0 2 0 2 0 0 0 0 0 0 0 0 Ag⊕E2g⊕2E4g⊕2E6g
11 0 0 0 0 0 0 0 0 2 0 0 2 0 2 0 1 2Au⊕2E2u⊕2E4u⊕E6u
12 1 0 0 2 0 2 0 2 0 0 0 0 0 0 0 0 Ag⊕2E2g⊕2E4g⊕2E6g
13 0 0 0 0 0 0 0 0 2 0 0 2 0 2 0 2 2Au⊕2E2u⊕2E4u⊕2E6u
14 3 0 0 2 0 2 0 2 0 0 0 0 0 0 0 0 3Ag⊕2E2g⊕2E4g⊕2E6g
15 0 0 0 0 0 0 0 0 2 0 0 2 0 2 0 3 2Au⊕2E2u⊕2E4u⊕3E6u
16 3 0 0 3 0 2 0 2 0 0 0 0 0 0 0 0 3Ag⊕3E2g⊕2E4g⊕2E6g
17 0 0 0 0 0 0 0 0 2 0 0 2 0 3 0 3 2Au⊕2E2u⊕3E4u⊕3E6u
18 3 0 0 3 0 3 0 2 0 0 0 0 0 0 0 0 3Ag⊕3E2g⊕3E4g⊕2E6g
19 0 0 0 0 0 0 0 0 2 0 0 3 0 3 0 3 2Au⊕3E2u⊕3E4u⊕3E6u
20 3 0 0 3 0 3 0 3 0 0 0 0 0 0 0 0 3Ag⊕3E2g⊕3E4g⊕3E6g



Last update January, 3rd 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement