Results for Point Group C11h



Symmetric powers of degenerate representation E'3
Vibrational overtones


Characters of symmetric powers
Power
To
E 2C11 2(C11)2 2(C11)3 2(C11)4 2(C11)5 σh 2S11 2(S11)9 2(S11)3 2(S11)7 2(S11)5
1 2 -0.285 -1.919 0.831 1.683 -1.310 2 -0.285 -1.919 0.831 1.683 -1.310
2 3 -0.919 2.683 -0.310 1.831 0.715 3 -0.919 2.683 -0.310 1.831 0.715
3 4 0.546 -3.229 -1.088 1.398 0.373 4 0.546 -3.229 -1.088 1.398 0.373
4 5 0.764 3.513 -0.594 0.521 -1.204 5 0.764 3.513 -0.594 0.521 -1.204
5 6 -0.764 -3.513 0.594 -0.521 1.204 6 -0.764 -3.513 0.594 -0.521 1.204
6 7 -0.546 3.229 1.088 -1.398 -0.373 7 -0.546 3.229 1.088 -1.398 -0.373
7 8 0.919 -2.683 0.310 -1.831 -0.715 8 0.919 -2.683 0.310 -1.831 -0.715
8 9 0.285 1.919 -0.831 -1.683 1.310 9 0.285 1.919 -0.831 -1.683 1.310
9 10 -1.000 -1.000 -1.000 -1.000 -1.000 10 -1.000 -1.000 -1.000 -1.000 -1.000
10 11 -0.000 0.000 0.000 -0.000 -0.000 11 -0.000 0.000 0.000 -0.000 -0.000
11 12 1.000 1.000 1.000 1.000 1.000 12 1.000 1.000 1.000 1.000 1.000
12 13 -0.285 -1.919 0.831 1.683 -1.310 13 -0.285 -1.919 0.831 1.683 -1.310
13 14 -0.919 2.683 -0.310 1.831 0.715 14 -0.919 2.683 -0.310 1.831 0.715
14 15 0.546 -3.229 -1.088 1.398 0.373 15 0.546 -3.229 -1.088 1.398 0.373
15 16 0.764 3.513 -0.594 0.521 -1.204 16 0.764 3.513 -0.594 0.521 -1.204
16 17 -0.764 -3.513 0.594 -0.521 1.204 17 -0.764 -3.513 0.594 -0.521 1.204
17 18 -0.546 3.229 1.088 -1.398 -0.373 18 -0.546 3.229 1.088 -1.398 -0.373
18 19 0.919 -2.683 0.310 -1.831 -0.715 19 0.919 -2.683 0.310 -1.831 -0.715
19 20 0.285 1.919 -0.831 -1.683 1.310 20 0.285 1.919 -0.831 -1.683 1.310
20 21 -1.000 -1.000 -1.000 -1.000 -1.000 21 -1.000 -1.000 -1.000 -1.000 -1.000


Decomposition to irreducible representations
Power
To
A' E'1* E'2* E'3* E'4* E'5* A'' E''1* E''2* E''3* E''4* E''5*
1 0 0 0 1 0 0 0 0 0 0 0 0 E'3
2 1 0 0 0 0 1 0 0 0 0 0 0 A'⊕E'5
3 0 0 1 1 0 0 0 0 0 0 0 0 E'2⊕E'3
4 1 1 0 0 0 1 0 0 0 0 0 0 A'⊕E'1⊕E'5
5 0 0 1 1 1 0 0 0 0 0 0 0 E'2⊕E'3⊕E'4
6 1 1 0 0 1 1 0 0 0 0 0 0 A'⊕E'1⊕E'4⊕E'5
7 0 1 1 1 1 0 0 0 0 0 0 0 E'1⊕E'2⊕E'3⊕E'4
8 1 1 1 0 1 1 0 0 0 0 0 0 A'⊕E'1⊕E'2⊕E'4⊕E'5
9 0 1 1 1 1 1 0 0 0 0 0 0 E'1⊕E'2⊕E'3⊕E'4⊕E'5
10 1 1 1 1 1 1 0 0 0 0 0 0 A'⊕E'1⊕E'2⊕E'3⊕E'4⊕E'5
11 2 1 1 1 1 1 0 0 0 0 0 0 2A'⊕E'1⊕E'2⊕E'3⊕E'4⊕E'5
12 1 1 1 2 1 1 0 0 0 0 0 0 A'⊕E'1⊕E'2⊕2E'3⊕E'4⊕E'5
13 2 1 1 1 1 2 0 0 0 0 0 0 2A'⊕E'1⊕E'2⊕E'3⊕E'4⊕2E'5
14 1 1 2 2 1 1 0 0 0 0 0 0 A'⊕E'1⊕2E'2⊕2E'3⊕E'4⊕E'5
15 2 2 1 1 1 2 0 0 0 0 0 0 2A'⊕2E'1⊕E'2⊕E'3⊕E'4⊕2E'5
16 1 1 2 2 2 1 0 0 0 0 0 0 A'⊕E'1⊕2E'2⊕2E'3⊕2E'4⊕E'5
17 2 2 1 1 2 2 0 0 0 0 0 0 2A'⊕2E'1⊕E'2⊕E'3⊕2E'4⊕2E'5
18 1 2 2 2 2 1 0 0 0 0 0 0 A'⊕2E'1⊕2E'2⊕2E'3⊕2E'4⊕E'5
19 2 2 2 1 2 2 0 0 0 0 0 0 2A'⊕2E'1⊕2E'2⊕E'3⊕2E'4⊕2E'5
20 1 2 2 2 2 2 0 0 0 0 0 0 A'⊕2E'1⊕2E'2⊕2E'3⊕2E'4⊕2E'5



Last update January, 3rd 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement