Results for Point Group C11h



Characters of symmetric power
Power
To
E C11 (C11)2 (C11)3 (C11)4 (C11)5 (C11)6 (C11)7 (C11)8 (C11)9 (C11)10 σh S11 (S11)13 (S11)3 (S11)15 (S11)5 (S11)17 (S11)7 (S11)19 (S11)9 (S11)21
1 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000


Decomposition to irreducible representations
Column for irrep E'-1583139744 highlighted
Power
To
A' E'1* E'2* E'3* E'4* E'5* A'' E''1* E''2* E''3* E''4* E''5*
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0



Contributions to irrep E'-1583139744


pos(X) : Position of irreducible representation (irrep) X in character table of C11h

Subtotal: <Contributions to irrep E'-1583139744 in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Contributions to irrep E'-1583139744> / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>


Contributions to irrep E'-1583139744 for symmetric power to 2
Irrep combinations (i,i) with indices: pos(A') ≤ i ≤ pos(E''5)
Subtotal: 0 / 0 / 12
Irrep combinations (i,j) with indices: pos(A') ≤ i ≤ j ≤ pos(E''5)
Subtotal: 0 / 0 / 66
Total: 0 / 0 / 78


Contributions to irrep E'-1583139744 for symmetric power to 3
Irrep combinations (i,i,i) with indices: pos(A') ≤ i ≤ pos(E''5)
Subtotal: 0 / 0 / 12
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A') ≤ i ≤ j ≤ pos(E''5)
Subtotal: 0 / 0 / 132
Irrep combinations (i,j,k) with indices: pos(A') ≤ i ≤ j ≤ k ≤ pos(E''5)
Subtotal: 0 / 0 / 220
Total: 0 / 0 / 364


Contributions to irrep E'-1583139744 for symmetric power to 4
Irrep combinations (i,i,i,i) with indices: pos(A') ≤ i ≤ pos(E''5)
Subtotal: 0 / 0 / 12
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A') ≤ i ≤ j ≤ pos(E''5)
Subtotal: 0 / 0 / 132
Irrep combinations (i,i,j,j) with indices: pos(A') ≤ i ≤ j ≤ pos(E''5)
Subtotal: 0 / 0 / 66
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A') ≤ i ≤ j ≤ k ≤ pos(E''5)
Subtotal: 0 / 0 / 660
Irrep combinations (i,j,k,l) with indices: pos(A') ≤ i ≤ j ≤ k ≤ l ≤ pos(E''5)
Subtotal: 0 / 0 / 495
Total: 0 / 0 / 1.365


Calculate contributions to

A' E'1 E'2 E'3 E'4 E'5 A'' E''1 E''2 E''3 E''4 E''5
Show only nonzero contributions Show all contributions
Max power 4Max power 5






Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement