Reduction formula for point group C3v



Characters of input representation
E 2C3 (z) 3v
7 1 3



Decomposition into Irreducible representations
A1 A2 E
3 0 2





Symmetric Powers of Representation


Characters of symmetric powers
Tensor
Order
E 2C3 (z) 3v
1 7 1 3
2 28 1 8
3 84 3 16
4 210 3 30
5 462 3 50
6 924 6 80


Decomposition into Irreducible representations
Tensor
Order
A1 A2 E
1 3 0 2
2 9 1 9
3 23 7 27
4 51 21 69
5 103 53 153
6 196 116 306





Antisymmetric Powers of Representation


Characters of antisymmetric powers
Tensor
Order
E 2C3 (z) 3v
17 1 3
221 0 1
335 2 -5
4 35 2 -5
5 21 0 1
6 7 1 3


Decomposition into Irreducible representations
Tensor
Order
A1 A2 E
1 3 0 2
2 4 3 7
3 4 9 11
4 4 9 11
5 4 3 7
6 3 0 2






Character tables for chemically important point groups Character table for point group C3v Jacobs University Bremen

Last update Mai, 23rd 2018 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement