Reduction formula for point group C3v



Characters of input representation
E 2C3 (z) 3v
17 2 5



Decomposition into Irreducible representations
A1 A2 E
6 1 5





Symmetric Powers of Representation


Characters of symmetric powers
Tensor
Order
E 2C3 (z) 3v
1 17 2 5
2 153 3 21
3 969 9 65
4 4.845 15 181
5 20.349 21 441
6 74.613 42 1.001


Decomposition into Irreducible representations
Tensor
Order
A1 A2 E
1 6 1 5
2 37 16 50
3 197 132 320
4 903 722 1.610
5 3.619 3.178 6.776
6 12.950 11.949 24.857





Antisymmetric Powers of Representation


Characters of antisymmetric powers
Tensor
Order
E 2C3 (z) 3v
117 2 5
2136 1 4
3680 5 -20
4 2.380 10 -40
5 6.188 5 16
6 12.376 10 100


Decomposition into Irreducible representations
Tensor
Order
A1 A2 E
1 6 1 5
2 25 21 45
3 105 125 225
4 380 420 790
5 1.041 1.025 2.061
6 2.116 2.016 4.122






Character tables for chemically important point groups Character table for point group C3v Jacobs University Bremen

Last update Mai, 23rd 2018 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement