Reduction formula for point group C2v



Characters of input representation
E C2 (z) v(xz) v(yz)
6 0 4 2



Decomposition into Irreducible representations
A1 A2 B1 B2
3 0 2 1





Symmetric Powers of Representation


Characters of symmetric powers
Tensor
Order
E C2 (z) v(xz) v(yz)
1 6 0 4 2
2 21 3 11 5
3 56 0 24 8
4 126 6 46 14
5 252 0 80 20
6 462 10 130 30


Decomposition into Irreducible representations
Tensor
Order
A1 A2 B1 B2
1 3 0 2 1
2 10 2 6 3
3 22 6 18 10
4 48 18 38 22
5 88 38 78 48
6 158 78 138 88





Antisymmetric Powers of Representation


Characters of antisymmetric powers
Tensor
Order
E C2 (z) v(xz) v(yz)
16 0 4 2
215 -3 5 -1
320 0 0 -4
4 15 3 -5 -1
5 6 0 -4 2
6 * 1 -1 -1 1
* Tensor rank equal tensor order

Decomposition into Irreducible representations
Tensor
Order
A1 A2 B1 B2
1 3 0 2 1
2 4 2 6 3
3 4 6 6 4
4 3 6 2 4
5 1 2 0 3
6 * 0 0 0 1
* Tensor rank equal tensor order





Character tables for chemically important point groups Character table for point group C2v Jacobs University Bremen

Last update Mai, 23rd 2018 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement