Characters of symmetric power
Power To |
E |
2C29 |
2(C29)2 |
2(C29)3 |
2(C29)4 |
2(C29)5 |
2(C29)6 |
2(C29)7 |
2(C29)8 |
2(C29)9 |
2(C29)10 |
2(C29)11 |
2(C29)12 |
2(C29)13 |
2(C29)14 |
29σv |
1 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
2 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
3 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
4 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
5 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
6 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
Decomposition to irreducible representations
Column for irrep E879797855 highlighted
Power To |
A1 |
A2 |
E1 |
E2 |
E3 |
E4 |
E5 |
E6 |
E7 |
E8 |
E9 |
E10 |
E11 |
E12 |
E13 |
E14 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
4 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
6 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Contributions to irrep
E879797855
pos(X) : Position of irreducible representation (irrep) X in character table of C
29v
Subtotal: <Contributions to irrep E
879797855 in subsection>
/ <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Contributions to irrep E
879797855>
/ <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>
Contributions to irrep
E879797855 for symmetric power to 2
Irrep combinations (i,i) with indices: pos(A1) ≤ i ≤ pos(E14) |
Subtotal: 0 / 0 / 16 |
Irrep combinations (i,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E14) |
Subtotal: 0 / 0 / 120 |
Total: 0 / 0 / 136 |
Contributions to irrep
E879797855 for symmetric power to 3
Irrep combinations (i,i,i) with indices: pos(A1) ≤ i ≤ pos(E14) |
Subtotal: 0 / 0 / 16 |
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E14) |
Subtotal: 0 / 0 / 240 |
Irrep combinations (i,j,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(E14) |
Subtotal: 0 / 0 / 560 |
Total: 0 / 0 / 816 |
Contributions to irrep
E879797855 for symmetric power to 4
Irrep combinations (i,i,i,i) with indices: pos(A1) ≤ i ≤ pos(E14) |
Subtotal: 0 / 0 / 16 |
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E14) |
Subtotal: 0 / 0 / 240 |
Irrep combinations (i,i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E14) |
Subtotal: 0 / 0 / 120 |
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(E14) |
Subtotal: 0 / 0 / 1.680 |
Irrep combinations (i,j,k,l) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ l ≤ pos(E14) |
Subtotal: 0 / 0 / 1.820 |
Total: 0 / 0 / 3.876 |
Calculate contributions to
Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement