Results for Point Group C29v



Force field analysis


Allowed / forbidden vibronational transitions
Operator A1 A2 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 Total
Linear (IR) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 0
Quadratic (Raman) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 0
IR + Raman 0 0 0 - - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 / 0


Characters of force fields
(Symmetric powers of vibration representation)
Force field E 2C29 2(C29)2 2(C29)3 2(C29)4 2(C29)5 2(C29)6 2(C29)7 2(C29)8 2(C29)9 2(C29)10 2(C29)11 2(C29)12 2(C29)13 2(C29)14 29σv
linear 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
quadratic 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
cubic 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
quartic 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
quintic 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
sextic 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0


Decomposition to irreducible representations
Column with number of nonvanshing force constants highlighted
Force field A1 A2 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14
linear 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
quadratic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cubic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
quartic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
quintic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sextic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Further Reading



Contributions to nonvanishing force field constants


pos(X) : Position of irreducible representation (irrep) X in character table of C29v

Subtotal: <Number of nonvanishing force constants in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Number of nonvanishing force constants in force field> / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>


Contributions to nonvanishing quadratic force field constants
Irrep combinations (i,i) with indices: pos(A1) ≤ i ≤ pos(E14)
Subtotal: 0 / 0 / 16
Irrep combinations (i,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E14)
Subtotal: 0 / 0 / 120
Total: 0 / 0 / 136


Contributions to nonvanishing cubic force field constants
Irrep combinations (i,i,i) with indices: pos(A1) ≤ i ≤ pos(E14)
Subtotal: 0 / 0 / 16
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E14)
Subtotal: 0 / 0 / 240
Irrep combinations (i,j,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(E14)
Subtotal: 0 / 0 / 560
Total: 0 / 0 / 816


Contributions to nonvanishing quartic force field constants
Irrep combinations (i,i,i,i) with indices: pos(A1) ≤ i ≤ pos(E14)
Subtotal: 0 / 0 / 16
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E14)
Subtotal: 0 / 0 / 240
Irrep combinations (i,i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E14)
Subtotal: 0 / 0 / 120
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(E14)
Subtotal: 0 / 0 / 1.680
Irrep combinations (i,j,k,l) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ l ≤ pos(E14)
Subtotal: 0 / 0 / 1.820
Total: 0 / 0 / 3.876


Calculate contributions to

A1 A2 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14
Show only nonzero contributions Show all contributions






Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement