Characters of symmetric power
| Power To
 | E | 2C28 | 2C14 | 2(C28)3 | 2C7 | 2(C28)5 | 2(C14)3 | 2C4 | 2(C7)2 | 2(C28)9 | 2(C14)5 | 2(C28)11 | 2(C7)3 | 2(C28)13 | C2 | 14σv | 14σd | 
| 1 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0 | 
| 2 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0 | 
| 3 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0 | 
| 4 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0 | 
| 5 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0 | 
| 6 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0 | 
Decomposition to irreducible representations
Column for irrep  highlighted
| Power To
 | A1 | A2 | B1 | B2 | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | E10 | E11 | E12 | E13 | 
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
Contributions to irrep 
pos(X) : Position of irreducible representation (irrep) X in character table of C
28v
Subtotal: <Contributions to irrep  in subsection>
 / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Contributions to irrep >
 / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>
Contributions to irrep 
 for symmetric power to 2
| Irrep combinations (i,i) with indices: pos(A1) ≤ i ≤ pos(E13) | 
|---|
| Subtotal: 0 / 0 / 17 | 
| Irrep combinations (i,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E13) | 
|---|
| Subtotal: 0 / 0 / 136 | 
| Total: 0 / 0 / 153 | 
Contributions to irrep 
 for symmetric power to 3
| Irrep combinations (i,i,i) with indices: pos(A1) ≤ i ≤ pos(E13) | 
|---|
| Subtotal: 0 / 0 / 17 | 
| Irrep combinations (i,i,j) (i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E13) | 
|---|
| Subtotal: 0 / 0 / 272 | 
| Irrep combinations (i,j,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(E13) | 
|---|
| Subtotal: 0 / 0 / 680 | 
| Total: 0 / 0 / 969 | 
Contributions to irrep 
 for symmetric power to 4
| Irrep combinations (i,i,i,i) with indices: pos(A1) ≤ i ≤ pos(E13) | 
|---|
| Subtotal: 0 / 0 / 17 | 
| Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E13) | 
|---|
| Subtotal: 0 / 0 / 272 | 
| Irrep combinations (i,i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E13) | 
|---|
| Subtotal: 0 / 0 / 136 | 
| Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(E13) | 
|---|
| Subtotal: 0 / 0 / 2.040 | 
| Irrep combinations (i,j,k,l) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ l ≤ pos(E13) | 
|---|
| Subtotal: 0 / 0 / 2.380 | 
| Total: 0 / 0 / 4.845 | 
Calculate contributions to
Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement