Results for Point Group C28v



Characters of symmetric power
Power
To
E 2C28 2C14 2(C28)3 2C7 2(C28)5 2(C14)3 2C4 2(C7)2 2(C28)9 2(C14)5 2(C28)11 2(C7)3 2(C28)13 C2 14σv 14σd
1 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0
2 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0
3 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0
4 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0
5 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0
6 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0


Decomposition to irreducible representations
Column for irrep highlighted
Power
To
A1 A2 B1 B2 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Contributions to irrep


pos(X) : Position of irreducible representation (irrep) X in character table of C28v

Subtotal: <Contributions to irrep in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Contributions to irrep > / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>


Contributions to irrep for symmetric power to 2
Irrep combinations (i,i) with indices: pos(A1) ≤ i ≤ pos(E13)
Subtotal: 0 / 0 / 17
Irrep combinations (i,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 136
Total: 0 / 0 / 153


Contributions to irrep for symmetric power to 3
Irrep combinations (i,i,i) with indices: pos(A1) ≤ i ≤ pos(E13)
Subtotal: 0 / 0 / 17
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 272
Irrep combinations (i,j,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(E13)
Subtotal: 0 / 0 / 680
Total: 0 / 0 / 969


Contributions to irrep for symmetric power to 4
Irrep combinations (i,i,i,i) with indices: pos(A1) ≤ i ≤ pos(E13)
Subtotal: 0 / 0 / 17
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 272
Irrep combinations (i,i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 136
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(E13)
Subtotal: 0 / 0 / 2.040
Irrep combinations (i,j,k,l) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ l ≤ pos(E13)
Subtotal: 0 / 0 / 2.380
Total: 0 / 0 / 4.845


Calculate contributions to

A1 A2 B1 B2 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13
Show only nonzero contributions Show all contributions






Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement