Characters of symmetric power
Power To |
E |
2C28 |
2C14 |
2(C28)3 |
2C7 |
2(C28)5 |
2(C14)3 |
2C4 |
2(C7)2 |
2(C28)9 |
2(C14)5 |
2(C28)11 |
2(C7)3 |
2(C28)13 |
C2 |
14σv |
14σd |
1 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0 |
0 |
2 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0 |
0 |
3 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0 |
0 |
4 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0 |
0 |
5 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0 |
0 |
6 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0 |
0 |
Decomposition to irreducible representations
Column for irrep highlighted
Power To |
A1 |
A2 |
B1 |
B2 |
E1 |
E2 |
E3 |
E4 |
E5 |
E6 |
E7 |
E8 |
E9 |
E10 |
E11 |
E12 |
E13 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
4 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
6 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Contributions to irrep
pos(X) : Position of irreducible representation (irrep) X in character table of C
28v
Subtotal: <Contributions to irrep in subsection>
/ <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Contributions to irrep >
/ <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>
Contributions to irrep
for symmetric power to 2
Irrep combinations (i,i) with indices: pos(A1) ≤ i ≤ pos(E13) |
Subtotal: 0 / 0 / 17 |
Irrep combinations (i,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E13) |
Subtotal: 0 / 0 / 136 |
Total: 0 / 0 / 153 |
Contributions to irrep
for symmetric power to 3
Irrep combinations (i,i,i) with indices: pos(A1) ≤ i ≤ pos(E13) |
Subtotal: 0 / 0 / 17 |
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E13) |
Subtotal: 0 / 0 / 272 |
Irrep combinations (i,j,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(E13) |
Subtotal: 0 / 0 / 680 |
Total: 0 / 0 / 969 |
Contributions to irrep
for symmetric power to 4
Irrep combinations (i,i,i,i) with indices: pos(A1) ≤ i ≤ pos(E13) |
Subtotal: 0 / 0 / 17 |
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E13) |
Subtotal: 0 / 0 / 272 |
Irrep combinations (i,i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E13) |
Subtotal: 0 / 0 / 136 |
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(E13) |
Subtotal: 0 / 0 / 2.040 |
Irrep combinations (i,j,k,l) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ l ≤ pos(E13) |
Subtotal: 0 / 0 / 2.380 |
Total: 0 / 0 / 4.845 |
Calculate contributions to
Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement