Results for Point Group D19



Symmetric powers of degenerate representation E4
Vibrational overtones


Characters of symmetric powers
Power
To
E 2C19 2(C19)2 2(C19)3 2(C19)4 2(C19)5 2(C19)6 2(C19)7 2(C19)8 2(C19)9 19C'2
1 2 0.491 -1.759 -1.355 1.094 1.892 -0.165 -1.973 -0.803 1.578 0
2 3 -0.759 2.094 0.835 0.197 2.578 -0.973 2.892 -0.355 1.491 1
3 4 -0.864 -1.924 0.224 -0.879 2.986 0.326 -3.732 1.088 0.775 0
4 5 0.335 1.291 -1.138 -1.158 3.069 0.919 4.470 -0.520 -0.268 1
5 6 1.028 -0.346 1.318 -0.388 2.820 -0.478 -5.086 -0.671 -1.198 0
6 7 0.170 -0.682 -0.647 0.734 2.266 -0.840 5.564 1.059 -1.623 1
7 8 -0.945 1.546 -0.441 1.190 1.466 0.616 -5.890 -0.180 -1.363 0
8 9 -0.634 -2.037 1.245 0.569 0.507 0.738 6.055 -0.914 -0.529 1
9 10 0.634 2.037 -1.245 -0.569 -0.507 -0.738 -6.055 0.914 0.529 0
10 11 0.945 -1.546 0.441 -1.190 -1.466 -0.616 5.890 0.180 1.363 1
11 12 -0.170 0.682 0.647 -0.734 -2.266 0.840 -5.564 -1.059 1.623 0
12 13 -1.028 0.346 -1.318 0.388 -2.820 0.478 5.086 0.671 1.198 1
13 14 -0.335 -1.291 1.138 1.158 -3.069 -0.919 -4.470 0.520 0.268 0
14 15 0.864 1.924 -0.224 0.879 -2.986 -0.326 3.732 -1.088 -0.775 1
15 16 0.759 -2.094 -0.835 -0.197 -2.578 0.973 -2.892 0.355 -1.491 0
16 17 -0.491 1.759 1.355 -1.094 -1.892 0.165 1.973 0.803 -1.578 1
17 18 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 0
18 19 -0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 1
19 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0
20 21 0.491 -1.759 -1.355 1.094 1.892 -0.165 -1.973 -0.803 1.578 1


Decomposition to irreducible representations
Power
To
A1 A2 E1 E2 E3 E4 E5 E6 E7 E8 E9
1 0 0 0 0 0 1 0 0 0 0 0 E4
2 1 0 0 0 0 0 0 0 0 1 0 A1⊕E8
3 0 0 0 0 0 1 0 0 1 0 0 E4⊕E7
4 1 0 0 0 1 0 0 0 0 1 0 A1⊕E3⊕E8
5 0 0 1 0 0 1 0 0 1 0 0 E1⊕E4⊕E7
6 1 0 0 0 1 0 1 0 0 1 0 A1⊕E3⊕E5⊕E8
7 0 0 1 0 0 1 0 0 1 0 1 E1⊕E4⊕E7⊕E9
8 1 0 0 0 1 0 1 1 0 1 0 A1⊕E3⊕E5⊕E6⊕E8
9 0 0 1 1 0 1 0 0 1 0 1 E1⊕E2⊕E4⊕E7⊕E9
10 1 0 0 1 1 0 1 1 0 1 0 A1⊕E2⊕E3⊕E5⊕E6⊕E8
11 0 0 1 1 0 1 0 1 1 0 1 E1⊕E2⊕E4⊕E6⊕E7⊕E9
12 1 0 0 1 1 0 1 1 0 1 1 A1⊕E2⊕E3⊕E5⊕E6⊕E8⊕E9
13 0 0 1 1 0 1 1 1 1 0 1 E1⊕E2⊕E4⊕E5⊕E6⊕E7⊕E9
14 1 0 1 1 1 0 1 1 0 1 1 A1⊕E1⊕E2⊕E3⊕E5⊕E6⊕E8⊕E9
15 0 0 1 1 1 1 1 1 1 0 1 E1⊕E2⊕E3⊕E4⊕E5⊕E6⊕E7⊕E9
16 1 0 1 1 1 0 1 1 1 1 1 A1⊕E1⊕E2⊕E3⊕E5⊕E6⊕E7⊕E8⊕E9
17 0 0 1 1 1 1 1 1 1 1 1 E1⊕E2⊕E3⊕E4⊕E5⊕E6⊕E7⊕E8⊕E9
18 1 0 1 1 1 1 1 1 1 1 1 A1⊕E1⊕E2⊕E3⊕E4⊕E5⊕E6⊕E7⊕E8⊕E9
19 1 1 1 1 1 1 1 1 1 1 1 A1⊕A2⊕E1⊕E2⊕E3⊕E4⊕E5⊕E6⊕E7⊕E8⊕E9
20 1 0 1 1 1 2 1 1 1 1 1 A1⊕E1⊕E2⊕E3⊕2E4⊕E5⊕E6⊕E7⊕E8⊕E9



Last update January, 3rd 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement