Results for Point Group D11



Characters of representations for molecular motions
Motion E 2C11 2(C11)2 2(C11)3 2(C11)4 2(C11)5 11C'2
Cartesian 3N 0 0.000 0.000 0.000 0.000 0.000 0
Translation (x,y,z) 3 2.683 1.831 0.715 -0.310 -0.919 -1
Rotation (Rx,Ry,Rz) 3 2.683 1.831 0.715 -0.310 -0.919 -1
Vibration -6 -5.365 -3.662 -1.431 0.619 1.838 2


Decomposition to irreducible representations
Motion A1 A2 E1 E2 E3 E4 E5 Total
Cartesian 3N 0 0 0 0 0 0 0 0
Translation (x,y,z) 0 1 1 0 0 0 0 2
Rotation (Rx,Ry,Rz) 0 1 1 0 0 0 0 2
Vibration 0 -2 -2 0 0 0 0 -4



Molecular parameter
Number of Atoms (N) 0
Number of internal coordinates -6
Number of independant internal coordinates 0
Number of vibrational modes -4


Force field analysis


Allowed / forbidden vibronational transitions
Operator A1 A2 E1 E2 E3 E4 E5 Total
Linear (IR) 0 -2 -2 0 0 0 0 -4 / 0
Quadratic (Raman) 0 -2 -2 0 0 0 0 -2 / -2
IR + Raman - - - - - - - - -2 - - - - 0 0 0 -2 / 0


Characters of force fields
(Symmetric powers of vibration representation)
Force field E 2C11 2(C11)2 2(C11)3 2(C11)4 2(C11)5 11C'2
linear -6 -5.365 -3.662 -1.431 0.619 1.838 2
quadratic 15 12.561 7.014 1.942 -0.524 -0.993 -1
cubic -20 -16.392 -8.704 -3.024 -2.192 -3.689 -4
quartic 15 12.561 7.014 1.942 -0.524 -0.993 -1
quintic -6 -5.365 -3.662 -1.431 0.619 1.838 2
sextic 1 1.000 1.000 1.000 1.000 1.000 1


Decomposition to irreducible representations
Column with number of nonvanshing force constants highlighted
Force field A1 A2 E1 E2 E3 E4 E5
linear 0 -2 -2 0 0 0 0
quadratic 2 3 4 1 0 0 0
cubic -6 -2 -4 -2 0 0 0
quartic 2 3 4 1 0 0 0
quintic 0 -2 -2 0 0 0 0
sextic 1 0 0 0 0 0 0


Further Reading



Contributions to nonvanishing force field constants


pos(X) : Position of irreducible representation (irrep) X in character table of D11

Subtotal: <Number of nonvanishing force constants in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Number of nonvanishing force constants in force field> / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>


Contributions to nonvanishing quadratic force field constants
Irrep combinations (i,i) with indices: pos(A1) ≤ i ≤ pos(E5)
..1. A2A2...1. E1E1.
Subtotal: 2 / 2 / 7
Irrep combinations (i,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E5)
Subtotal: 0 / 0 / 21
Total: 2 / 2 / 28


Contributions to nonvanishing cubic force field constants
Irrep combinations (i,i,i) with indices: pos(A1) ≤ i ≤ pos(E5)
Subtotal: 0 / 0 / 7
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E5)
Subtotal: -6 / 0 / 42
Irrep combinations (i,j,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(E5)
Subtotal: 0 / 0 / 35
Total: -6 / 0 / 84


Contributions to nonvanishing quartic force field constants
Irrep combinations (i,i,i,i) with indices: pos(A1) ≤ i ≤ pos(E5)
..1. E1E1E1E1.
Subtotal: 1 / 1 / 7
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E5)
Subtotal: 0 / 0 / 42
Irrep combinations (i,i,j,j) with indices: pos(A1) ≤ i ≤ j ≤ pos(E5)
..1. A2A2E1E1.
Subtotal: 1 / 1 / 21
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ pos(E5)
Subtotal: 0 / 0 / 105
Irrep combinations (i,j,k,l) with indices: pos(A1) ≤ i ≤ j ≤ k ≤ l ≤ pos(E5)
Subtotal: 0 / 0 / 35
Total: 2 / 2 / 210


Calculate contributions to

A1 A2 E1 E2 E3 E4 E5
Show only nonzero contributions Show all contributions
Up to quartic force fieldUp to quintic force fieldUp to sextic force field






Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement