 =exp(2
=exp(2 i/8)
i/8)| C8 | E | C8 | C4 | (C8)3 | C2 | (C8)5 | (C4)3 | (C8)7 | rotations | functions | functions | 
|---|---|---|---|---|---|---|---|---|---|---|---|
| A | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | z, Rz | x2+y2, z2 | z3, z(x2+y2) | 
| B | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | - | - | - | 
| E1 | +1 +1 | +  +  * | +i -i | -  * -  | -1 -1 | -  -  * | -i +i | +  * +  | x+iy, Rx+iRy x-iy, Rx-iRy | (xz, yz) | (xz2, yz2) [x(x2+y2), y(x2+y2)] | 
| E2 | +1 +1 | +i -i | -1 -1 | -i +i | +1 +1 | +i -i | -1 -1 | -i +i | - | (x2-y2, xy) | [xyz, z(x2-y2)] | 
| E3 | +1 +1 | -  -  * | +i -i | +  * +  | -1 -1 | +  +  * | -i +i | -  * -  | - | - | [y(3x2-y2), x(x2-3y2)] | 
| Number of symmetry elements | h = 8 | 
| Number of irreducible representations | n = 8 | 
| Number of real irreducible representations | n = 5 | 
| Abelian group | yes | 
| Number of subgroups | 2 | 
| Subgroups | C2 , C4 | 
|---|---|
| Optical Isomerism (Chirality) | yes | 
| Polar | yes | 
| dipole (p) | A+E1 | 
|---|---|
| quadrupole (d) | A+E1+E2 | 
| octopole (f) | A+E1+E2+E3 | 
| hexadecapole (g) | A+2B+E1+E2+E3 | 
| 32-pole (h) | A+2B+E1+E2+2E3 | 
| 64-pole (i) | A+2B+E1+2E2+2E3 | 
| 128-pole (j) | A+2B+2E1+2E2+2E3 | 
| 256-pole(k) | 3A+2B+2E1+2E2+2E3 | 
| 512-pole (l) | 3A+2B+3E1+2E2+2E3 | 
 
 
