## Character table for point group C7

=exp(2i/7)
 C7 E C7 (C7)2 (C7)3 (C7)4 (C7)5 (C7)6 linear functions,rotations quadraticfunctions cubicfunctions A +1 +1 +1 +1 +1 +1 +1 z, Rz x2+y2, z2 z3, z(x2+y2) E1 +1+1 ++* +2+2* +3+3* +3*+3 +2*+2 +*+ x+iy, Rx+iRy x-iy, Rx-iRy (xz, yz) (xz2, yz2) [x(x2+y2), y(x2+y2)] E2 +1+1 +2+2* +3*+3 +*+ ++* +3+3* +2*+2 - (x2-y2, xy) [xyz, z(x2-y2)] E3 +1+1 +3+3* +*+ +2+2* +2*+2 ++* +3*+3 - - [y(3x2-y2), x(x2-3y2)]

 Number of symmetry elements h = 7 Number of irreducible representations n = 7 Number of real irreducible representations n = 4 Abelian group yes Optical Isomerism (Chirality) yes Polar yes

## Reduction formula for point group C7

Type of representation

Information for point groups with complex irreducible representations

general 3N vib

E C7 (C7)2 (C7)3 (C7)4 (C7)5 (C7)6

## Multipoles

dipole (p) A+E1 A+E1+E2 A+E1+E2+E3 A+E1+E2+2E3 A+E1+2E2+2E3 A+2E1+2E2+2E3 3A+2E1+2E2+2E3 3A+3E1+2E2+2E3 3A+3E1+3E2+2E3

First nonvanishing multipole: dipole

### Literature

Last update Mai, 23rd 2018 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement