Results for Point Group C15



Symmetric powers of degenerate representation E6
Vibrational overtones


Characters of symmetric powers
Power
To
E C15 (C15)2 C5 (C15)4 C3 (C5)2 (C15)7 (C15)8 (C5)3 (C3)2 (C15)11 (C5)4 (C15)13 (C15)14
1 2 -1.618 0.618 0.618 -1.618 2 -1.618 0.618 0.618 -1.618 2 -1.618 0.618 0.618 -1.618
2 3 1.618 -0.618 -0.618 1.618 3 1.618 -0.618 -0.618 1.618 3 1.618 -0.618 -0.618 1.618
3 4 -1.000 -1.000 -1.000 -1.000 4 -1.000 -1.000 -1.000 -1.000 4 -1.000 -1.000 -1.000 -1.000
4 5 -0.000 0.000 -0.000 0.000 5 -0.000 0.000 -0.000 0.000 5 -0.000 0.000 -0.000 0.000
5 6 1.000 1.000 1.000 1.000 6 1.000 1.000 1.000 1.000 6 1.000 1.000 1.000 1.000
6 7 -1.618 0.618 0.618 -1.618 7 -1.618 0.618 0.618 -1.618 7 -1.618 0.618 0.618 -1.618
7 8 1.618 -0.618 -0.618 1.618 8 1.618 -0.618 -0.618 1.618 8 1.618 -0.618 -0.618 1.618
8 9 -1.000 -1.000 -1.000 -1.000 9 -1.000 -1.000 -1.000 -1.000 9 -1.000 -1.000 -1.000 -1.000
9 10 -0.000 0.000 -0.000 0.000 10 -0.000 0.000 -0.000 0.000 10 -0.000 0.000 -0.000 0.000
10 11 1.000 1.000 1.000 1.000 11 1.000 1.000 1.000 1.000 11 1.000 1.000 1.000 1.000
11 12 -1.618 0.618 0.618 -1.618 12 -1.618 0.618 0.618 -1.618 12 -1.618 0.618 0.618 -1.618
12 13 1.618 -0.618 -0.618 1.618 13 1.618 -0.618 -0.618 1.618 13 1.618 -0.618 -0.618 1.618
13 14 -1.000 -1.000 -1.000 -1.000 14 -1.000 -1.000 -1.000 -1.000 14 -1.000 -1.000 -1.000 -1.000
14 15 -0.000 0.000 -0.000 0.000 15 -0.000 0.000 -0.000 0.000 15 -0.000 0.000 -0.000 0.000
15 16 1.000 1.000 1.000 1.000 16 1.000 1.000 1.000 1.000 16 1.000 1.000 1.000 1.000
16 17 -1.618 0.618 0.618 -1.618 17 -1.618 0.618 0.618 -1.618 17 -1.618 0.618 0.618 -1.618
17 18 1.618 -0.618 -0.618 1.618 18 1.618 -0.618 -0.618 1.618 18 1.618 -0.618 -0.618 1.618
18 19 -1.000 -1.000 -1.000 -1.000 19 -1.000 -1.000 -1.000 -1.000 19 -1.000 -1.000 -1.000 -1.000
19 20 -0.000 0.000 -0.000 0.000 20 -0.000 0.000 -0.000 0.000 20 -0.000 0.000 -0.000 0.000
20 21 1.000 1.000 1.000 1.000 21 1.000 1.000 1.000 1.000 21 1.000 1.000 1.000 1.000


Decomposition to irreducible representations
Power
To
A E1* E2* E3* E4* E5* E6* E7*
1 0 0 0 0 0 0 1 0 E6
2 1 0 0 1 0 0 0 0 A⊕E3
3 0 0 0 1 0 0 1 0 E3⊕E6
4 1 0 0 1 0 0 1 0 A⊕E3⊕E6
5 2 0 0 1 0 0 1 0 2A⊕E3⊕E6
6 1 0 0 1 0 0 2 0 A⊕E3⊕2E6
7 2 0 0 2 0 0 1 0 2A⊕2E3⊕E6
8 1 0 0 2 0 0 2 0 A⊕2E3⊕2E6
9 2 0 0 2 0 0 2 0 2A⊕2E3⊕2E6
10 3 0 0 2 0 0 2 0 3A⊕2E3⊕2E6
11 2 0 0 2 0 0 3 0 2A⊕2E3⊕3E6
12 3 0 0 3 0 0 2 0 3A⊕3E3⊕2E6
13 2 0 0 3 0 0 3 0 2A⊕3E3⊕3E6
14 3 0 0 3 0 0 3 0 3A⊕3E3⊕3E6
15 4 0 0 3 0 0 3 0 4A⊕3E3⊕3E6
16 3 0 0 3 0 0 4 0 3A⊕3E3⊕4E6
17 4 0 0 4 0 0 3 0 4A⊕4E3⊕3E6
18 3 0 0 4 0 0 4 0 3A⊕4E3⊕4E6
19 4 0 0 4 0 0 4 0 4A⊕4E3⊕4E6
20 5 0 0 4 0 0 4 0 5A⊕4E3⊕4E6



Last update January, 3rd 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement