Results for Point Group C14



Symmetric powers of degenerate representation E6
Vibrational overtones


Characters of symmetric powers
Power
To
E C14 C7 (C14)3 (C7)2 (C14)5 (C7)3 C2 (C7)4 (C14)9 (C7)5 (C14)11 (C7)6 (C14)13
1 2 -1.802 1.247 -0.445 -0.445 1.247 -1.802 2 -1.802 1.247 -0.445 -0.445 1.247 -1.802
2 3 2.247 0.555 -0.802 -0.802 0.555 2.247 3 2.247 0.555 -0.802 -0.802 0.555 2.247
3 4 -2.247 -0.555 0.802 0.802 -0.555 -2.247 4 -2.247 -0.555 0.802 0.802 -0.555 -2.247
4 5 1.802 -1.247 0.445 0.445 -1.247 1.802 5 1.802 -1.247 0.445 0.445 -1.247 1.802
5 6 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 6 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
6 7 -0.000 0.000 -0.000 0.000 -0.000 0.000 7 -0.000 0.000 -0.000 0.000 -0.000 0.000
7 8 1.000 1.000 1.000 1.000 1.000 1.000 8 1.000 1.000 1.000 1.000 1.000 1.000
8 9 -1.802 1.247 -0.445 -0.445 1.247 -1.802 9 -1.802 1.247 -0.445 -0.445 1.247 -1.802
9 10 2.247 0.555 -0.802 -0.802 0.555 2.247 10 2.247 0.555 -0.802 -0.802 0.555 2.247
10 11 -2.247 -0.555 0.802 0.802 -0.555 -2.247 11 -2.247 -0.555 0.802 0.802 -0.555 -2.247
11 12 1.802 -1.247 0.445 0.445 -1.247 1.802 12 1.802 -1.247 0.445 0.445 -1.247 1.802
12 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
13 14 -0.000 0.000 -0.000 0.000 -0.000 0.000 14 -0.000 0.000 -0.000 0.000 -0.000 0.000
14 15 1.000 1.000 1.000 1.000 1.000 1.000 15 1.000 1.000 1.000 1.000 1.000 1.000
15 16 -1.802 1.247 -0.445 -0.445 1.247 -1.802 16 -1.802 1.247 -0.445 -0.445 1.247 -1.802
16 17 2.247 0.555 -0.802 -0.802 0.555 2.247 17 2.247 0.555 -0.802 -0.802 0.555 2.247
17 18 -2.247 -0.555 0.802 0.802 -0.555 -2.247 18 -2.247 -0.555 0.802 0.802 -0.555 -2.247
18 19 1.802 -1.247 0.445 0.445 -1.247 1.802 19 1.802 -1.247 0.445 0.445 -1.247 1.802
19 20 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 20 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
20 21 -0.000 0.000 -0.000 0.000 -0.000 0.000 21 -0.000 0.000 -0.000 0.000 -0.000 0.000


Decomposition to irreducible representations
Power
To
A B E1* E2* E3* E4* E5* E6*
1 0 0 0 0 0 0 0 1 E6
2 1 0 0 1 0 0 0 0 A⊕E2
3 0 0 0 0 0 1 0 1 E4⊕E6
4 1 0 0 1 0 1 0 0 A⊕E2⊕E4
5 0 0 0 1 0 1 0 1 E2⊕E4⊕E6
6 1 0 0 1 0 1 0 1 A⊕E2⊕E4⊕E6
7 2 0 0 1 0 1 0 1 2A⊕E2⊕E4⊕E6
8 1 0 0 1 0 1 0 2 A⊕E2⊕E4⊕2E6
9 2 0 0 2 0 1 0 1 2A⊕2E2⊕E4⊕E6
10 1 0 0 1 0 2 0 2 A⊕E2⊕2E4⊕2E6
11 2 0 0 2 0 2 0 1 2A⊕2E2⊕2E4⊕E6
12 1 0 0 2 0 2 0 2 A⊕2E2⊕2E4⊕2E6
13 2 0 0 2 0 2 0 2 2A⊕2E2⊕2E4⊕2E6
14 3 0 0 2 0 2 0 2 3A⊕2E2⊕2E4⊕2E6
15 2 0 0 2 0 2 0 3 2A⊕2E2⊕2E4⊕3E6
16 3 0 0 3 0 2 0 2 3A⊕3E2⊕2E4⊕2E6
17 2 0 0 2 0 3 0 3 2A⊕2E2⊕3E4⊕3E6
18 3 0 0 3 0 3 0 2 3A⊕3E2⊕3E4⊕2E6
19 2 0 0 3 0 3 0 3 2A⊕3E2⊕3E4⊕3E6
20 3 0 0 3 0 3 0 3 3A⊕3E2⊕3E4⊕3E6



Last update January, 3rd 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement