Results for Point Group C14



Symmetric powers of degenerate representation E3
Vibrational overtones


Characters of symmetric powers
Power
To
E C14 C7 (C14)3 (C7)2 (C14)5 (C7)3 C2 (C7)4 (C14)9 (C7)5 (C14)11 (C7)6 (C14)13
1 2 0.445 -1.802 -1.247 1.247 1.802 -0.445 -2 -0.445 1.802 1.247 -1.247 -1.802 0.445
2 3 -0.802 2.247 0.555 0.555 2.247 -0.802 3 -0.802 2.247 0.555 0.555 2.247 -0.802
3 4 -0.802 -2.247 0.555 -0.555 2.247 0.802 -4 0.802 2.247 -0.555 0.555 -2.247 -0.802
4 5 0.445 1.802 -1.247 -1.247 1.802 0.445 5 0.445 1.802 -1.247 -1.247 1.802 0.445
5 6 1.000 -1.000 1.000 -1.000 1.000 -1.000 -6 -1.000 1.000 -1.000 1.000 -1.000 1.000
6 7 0.000 -0.000 -0.000 0.000 0.000 -0.000 7 0.000 -0.000 -0.000 0.000 0.000 -0.000
7 8 -1.000 1.000 -1.000 1.000 -1.000 1.000 -8 1.000 -1.000 1.000 -1.000 1.000 -1.000
8 9 -0.445 -1.802 1.247 1.247 -1.802 -0.445 9 -0.445 -1.802 1.247 1.247 -1.802 -0.445
9 10 0.802 2.247 -0.555 0.555 -2.247 -0.802 -10 -0.802 -2.247 0.555 -0.555 2.247 0.802
10 11 0.802 -2.247 -0.555 -0.555 -2.247 0.802 11 0.802 -2.247 -0.555 -0.555 -2.247 0.802
11 12 -0.445 1.802 1.247 -1.247 -1.802 0.445 -12 0.445 -1.802 -1.247 1.247 1.802 -0.445
12 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
13 14 -0.000 -0.000 0.000 0.000 -0.000 -0.000 -14 0.000 0.000 -0.000 -0.000 0.000 0.000
14 15 1.000 1.000 1.000 1.000 1.000 1.000 15 1.000 1.000 1.000 1.000 1.000 1.000
15 16 0.445 -1.802 -1.247 1.247 1.802 -0.445 -16 -0.445 1.802 1.247 -1.247 -1.802 0.445
16 17 -0.802 2.247 0.555 0.555 2.247 -0.802 17 -0.802 2.247 0.555 0.555 2.247 -0.802
17 18 -0.802 -2.247 0.555 -0.555 2.247 0.802 -18 0.802 2.247 -0.555 0.555 -2.247 -0.802
18 19 0.445 1.802 -1.247 -1.247 1.802 0.445 19 0.445 1.802 -1.247 -1.247 1.802 0.445
19 20 1.000 -1.000 1.000 -1.000 1.000 -1.000 -20 -1.000 1.000 -1.000 1.000 -1.000 1.000
20 21 0.000 -0.000 -0.000 0.000 0.000 -0.000 21 0.000 -0.000 -0.000 0.000 0.000 -0.000


Decomposition to irreducible representations
Power
To
A B E1* E2* E3* E4* E5* E6*
1 0 0 0 0 1 0 0 0 E3
2 1 0 0 0 0 0 0 1 A⊕E6
3 0 0 0 0 1 0 1 0 E3⊕E5
4 1 0 0 1 0 0 0 1 A⊕E2⊕E6
5 0 0 1 0 1 0 1 0 E1⊕E3⊕E5
6 1 0 0 1 0 1 0 1 A⊕E2⊕E4⊕E6
7 0 2 1 0 1 0 1 0 2B⊕E1⊕E3⊕E5
8 1 0 0 1 0 2 0 1 A⊕E2⊕2E4⊕E6
9 0 2 2 0 1 0 1 0 2B⊕2E1⊕E3⊕E5
10 1 0 0 2 0 2 0 1 A⊕2E2⊕2E4⊕E6
11 0 2 2 0 1 0 2 0 2B⊕2E1⊕E3⊕2E5
12 1 0 0 2 0 2 0 2 A⊕2E2⊕2E4⊕2E6
13 0 2 2 0 2 0 2 0 2B⊕2E1⊕2E3⊕2E5
14 3 0 0 2 0 2 0 2 3A⊕2E2⊕2E4⊕2E6
15 0 2 2 0 3 0 2 0 2B⊕2E1⊕3E3⊕2E5
16 3 0 0 2 0 2 0 3 3A⊕2E2⊕2E4⊕3E6
17 0 2 2 0 3 0 3 0 2B⊕2E1⊕3E3⊕3E5
18 3 0 0 3 0 2 0 3 3A⊕3E2⊕2E4⊕3E6
19 0 2 3 0 3 0 3 0 2B⊕3E1⊕3E3⊕3E5
20 3 0 0 3 0 3 0 3 3A⊕3E2⊕3E4⊕3E6



Last update January, 3rd 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement