Results for Point Group C14



Symmetric powers of degenerate representation E2
Vibrational overtones


Characters of symmetric powers
Power
To
E 2C14 2C7 2(C14)3 2(C7)2 2(C14)5 2(C7)3 C2
1 2 1.247 -0.445 -1.802 -1.802 -0.445 1.247 2
2 3 0.555 -0.802 2.247 2.247 -0.802 0.555 3
3 4 -0.555 0.802 -2.247 -2.247 0.802 -0.555 4
4 5 -1.247 0.445 1.802 1.802 0.445 -1.247 5
5 6 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 6
6 7 -0.000 -0.000 -0.000 0.000 0.000 0.000 7
7 8 1.000 1.000 1.000 1.000 1.000 1.000 8
8 9 1.247 -0.445 -1.802 -1.802 -0.445 1.247 9
9 10 0.555 -0.802 2.247 2.247 -0.802 0.555 10
10 11 -0.555 0.802 -2.247 -2.247 0.802 -0.555 11
11 12 -1.247 0.445 1.802 1.802 0.445 -1.247 12
12 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 13
13 14 -0.000 -0.000 -0.000 0.000 0.000 0.000 14
14 15 1.000 1.000 1.000 1.000 1.000 1.000 15
15 16 1.247 -0.445 -1.802 -1.802 -0.445 1.247 16
16 17 0.555 -0.802 2.247 2.247 -0.802 0.555 17
17 18 -0.555 0.802 -2.247 -2.247 0.802 -0.555 18
18 19 -1.247 0.445 1.802 1.802 0.445 -1.247 19
19 20 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 20
20 21 -0.000 -0.000 -0.000 0.000 0.000 0.000 21


Decomposition to irreducible representations
Power
To
A B E1* E2* E3* E4* E5* E6*
1 0 0 0 1 0 0 0 0 E2
2 1 0 0 0 0 1 0 0 A⊕E4
3 0 0 0 1 0 0 0 1 E2⊕E6
4 1 0 0 0 0 1 0 1 A⊕E4⊕E6
5 0 0 0 1 0 1 0 1 E2⊕E4⊕E6
6 1 0 0 1 0 1 0 1 A⊕E2⊕E4⊕E6
7 2 0 0 1 0 1 0 1 2A⊕E2⊕E4⊕E6
8 1 0 0 2 0 1 0 1 A⊕2E2⊕E4⊕E6
9 2 0 0 1 0 2 0 1 2A⊕E2⊕2E4⊕E6
10 1 0 0 2 0 1 0 2 A⊕2E2⊕E4⊕2E6
11 2 0 0 1 0 2 0 2 2A⊕E2⊕2E4⊕2E6
12 1 0 0 2 0 2 0 2 A⊕2E2⊕2E4⊕2E6
13 2 0 0 2 0 2 0 2 2A⊕2E2⊕2E4⊕2E6
14 3 0 0 2 0 2 0 2 3A⊕2E2⊕2E4⊕2E6
15 2 0 0 3 0 2 0 2 2A⊕3E2⊕2E4⊕2E6
16 3 0 0 2 0 3 0 2 3A⊕2E2⊕3E4⊕2E6
17 2 0 0 3 0 2 0 3 2A⊕3E2⊕2E4⊕3E6
18 3 0 0 2 0 3 0 3 3A⊕2E2⊕3E4⊕3E6
19 2 0 0 3 0 3 0 3 2A⊕3E2⊕3E4⊕3E6
20 3 0 0 3 0 3 0 3 3A⊕3E2⊕3E4⊕3E6



Last update January, 3rd 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement