Results for Point Group C14



Symmetric powers of degenerate representation E1
Vibrational overtones


Characters of symmetric powers
Power
To
E 2C14 2C7 2(C14)3 2(C7)2 2(C14)5 2(C7)3 C2
1 2 1.802 1.247 0.445 -0.445 -1.247 -1.802 -2
2 3 2.247 0.555 -0.802 -0.802 0.555 2.247 3
3 4 2.247 -0.555 -0.802 0.802 0.555 -2.247 -4
4 5 1.802 -1.247 0.445 0.445 -1.247 1.802 5
5 6 1.000 -1.000 1.000 -1.000 1.000 -1.000 -6
6 7 0.000 -0.000 0.000 -0.000 0.000 -0.000 7
7 8 -1.000 1.000 -1.000 1.000 -1.000 1.000 -8
8 9 -1.802 1.247 -0.445 -0.445 1.247 -1.802 9
9 10 -2.247 0.555 0.802 -0.802 -0.555 2.247 -10
10 11 -2.247 -0.555 0.802 0.802 -0.555 -2.247 11
11 12 -1.802 -1.247 -0.445 0.445 1.247 1.802 -12
12 13 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 13
13 14 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -14
14 15 1.000 1.000 1.000 1.000 1.000 1.000 15
15 16 1.802 1.247 0.445 -0.445 -1.247 -1.802 -16
16 17 2.247 0.555 -0.802 -0.802 0.555 2.247 17
17 18 2.247 -0.555 -0.802 0.802 0.555 -2.247 -18
18 19 1.802 -1.247 0.445 0.445 -1.247 1.802 19
19 20 1.000 -1.000 1.000 -1.000 1.000 -1.000 -20
20 21 0.000 -0.000 0.000 -0.000 0.000 -0.000 21


Decomposition to irreducible representations
Power
To
A B E1* E2* E3* E4* E5* E6*
1 0 0 1 0 0 0 0 0 E1
2 1 0 0 1 0 0 0 0 A⊕E2
3 0 0 1 0 1 0 0 0 E1⊕E3
4 1 0 0 1 0 1 0 0 A⊕E2⊕E4
5 0 0 1 0 1 0 1 0 E1⊕E3⊕E5
6 1 0 0 1 0 1 0 1 A⊕E2⊕E4⊕E6
7 0 2 1 0 1 0 1 0 2B⊕E1⊕E3⊕E5
8 1 0 0 1 0 1 0 2 A⊕E2⊕E4⊕2E6
9 0 2 1 0 1 0 2 0 2B⊕E1⊕E3⊕2E5
10 1 0 0 1 0 2 0 2 A⊕E2⊕2E4⊕2E6
11 0 2 1 0 2 0 2 0 2B⊕E1⊕2E3⊕2E5
12 1 0 0 2 0 2 0 2 A⊕2E2⊕2E4⊕2E6
13 0 2 2 0 2 0 2 0 2B⊕2E1⊕2E3⊕2E5
14 3 0 0 2 0 2 0 2 3A⊕2E2⊕2E4⊕2E6
15 0 2 3 0 2 0 2 0 2B⊕3E1⊕2E3⊕2E5
16 3 0 0 3 0 2 0 2 3A⊕3E2⊕2E4⊕2E6
17 0 2 3 0 3 0 2 0 2B⊕3E1⊕3E3⊕2E5
18 3 0 0 3 0 3 0 2 3A⊕3E2⊕3E4⊕2E6
19 0 2 3 0 3 0 3 0 2B⊕3E1⊕3E3⊕3E5
20 3 0 0 3 0 3 0 3 3A⊕3E2⊕3E4⊕3E6



Last update January, 3rd 2020 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement