Results for Point Group C30



Characters of symmetric power
Power
To
E C30 C15 C10 (C15)2 C6 C5 (C30)7 (C15)4 (C10)3 C3 (C30)11 (C5)2 (C30)13 (C15)7 C2 (C15)8 (C30)17 (C5)3 (C30)19 (C3)2 (C10)7 (C15)11 (C30)23 (C5)4 (C6)5 (C15)13 (C10)9 (C15)14 (C30)29
1 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
2 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
3 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
4 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
5 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
6 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000


Decomposition to irreducible representations
Column for irrep E1735528735 highlighted
Power
To
A B E1* E2* E3* E4* E5* E6* E7* E8* E9* E10* E11* E12* E13* E14*
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Contributions to irrep E1735528735


pos(X) : Position of irreducible representation (irrep) X in character table of C30

Subtotal: <Contributions to irrep E1735528735 in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Contributions to irrep E1735528735> / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>


Contributions to irrep E1735528735 for symmetric power to 2
Irrep combinations (i,i) with indices: pos(A) ≤ i ≤ pos(E14)
Subtotal: 0 / 0 / 16
Irrep combinations (i,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E14)
Subtotal: 0 / 0 / 120
Total: 0 / 0 / 136


Contributions to irrep E1735528735 for symmetric power to 3
Irrep combinations (i,i,i) with indices: pos(A) ≤ i ≤ pos(E14)
Subtotal: 0 / 0 / 16
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E14)
Subtotal: 0 / 0 / 240
Irrep combinations (i,j,k) with indices: pos(A) ≤ i ≤ j ≤ k ≤ pos(E14)
Subtotal: 0 / 0 / 560
Total: 0 / 0 / 816


Contributions to irrep E1735528735 for symmetric power to 4
Irrep combinations (i,i,i,i) with indices: pos(A) ≤ i ≤ pos(E14)
Subtotal: 0 / 0 / 16
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E14)
Subtotal: 0 / 0 / 240
Irrep combinations (i,i,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E14)
Subtotal: 0 / 0 / 120
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A) ≤ i ≤ j ≤ k ≤ pos(E14)
Subtotal: 0 / 0 / 1.680
Irrep combinations (i,j,k,l) with indices: pos(A) ≤ i ≤ j ≤ k ≤ l ≤ pos(E14)
Subtotal: 0 / 0 / 1.820
Total: 0 / 0 / 3.876


Calculate contributions to

A B E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14
Show only nonzero contributions Show all contributions






Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement